Corpus ID: 27428033

Archivum Mathematicum

@inproceedings{Bartusek2014ArchivumM,
  title={Archivum Mathematicum},
  author={M. Bartusek and C. G. Kokologiannaki},
  year={2014}
}
We obtain monotonicity results concerning the oscillatory solutions of the differential equation (a(t)|y′|p−1y′)′+f(t, y, y′) = 0. The obtained results generalize the results given by the first author in [1] (1976). We also give some results concerning a special case of the above differential equation. 
Adapted connections on metric contact manifolds
Compactness of Constant Mean Curvature Surfaces in Three Manifold with Positive Ricci Curvature
The Monadic Tower for $\infty$-Categories

References

SHOWING 1-10 OF 15 REFERENCES
On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
Half-linear differential equations
Further higher monotonicity properties of Sturm-Liouville functions
Monotonicity theorems concerning differential equations $y^{\prime \prime }+f(t,y,y^{\prime })=0$
...
1
2
...