Approximation of continuous periodic functions by de la Vallee Poussin sums
@article{Ovsii2012ApproximationOC, title={Approximation of continuous periodic functions by de la Vallee Poussin sums}, author={Ie.Yu. Ovsii and A. Serdyuk}, journal={arXiv: Classical Analysis and ODEs}, year={2012} }
We obtain an estimate of the deviation of de la Vallee Poussin sums V_{n,n/2}(f;x) from continuous functions f, expressed in terms of values of theirs modulus of continuity. It is established that this estimate can't be improved by using the well-known analogue of the Lebesgue inequality for de la Vallee Poussin sums
3 Citations
References
SHOWING 1-4 OF 4 REFERENCES
Sur la meilleure approximation des fonctions d’une variable réelle par des expressions d’ordre donné
- Comptes rendus de l’Académie des Sciences
- 1918