Approximation for Frobenius algebraic equations in Witt vectors

@article{Blair2009ApproximationFF,
  title={Approximation for Frobenius algebraic equations in Witt vectors},
  author={Luc B{\'e}lair},
  journal={Journal of Algebra},
  year={2009},
  volume={321},
  pages={2353-2364}
}
Abstract We prove an approximation property for solutions to difference equations in excellent discrete valuation rings satisfying an appropriate Hensel's lemma, analog to a theorem of Greenberg [M. Greenberg, Rational points in henselian discrete valuation rings, Publ. Math. Inst. Hautes Etudes Sci. 31 (1966) 59–64]. In the case of Witt vectors we obtain a Nullstellensatz for Frobenius algebraic equations. 
3 Citations
Primitive Element Theorem for Fields with Commuting Derivations and Automorphisms
  • 1
  • PDF
Witt vectors. Part 1
  • 24
  • PDF

References

SHOWING 1-10 OF 28 REFERENCES
Model theory of the Frobenius on the Witt vectors
  • 27
  • PDF
Quantifier Elimination for the Relative Frobenius
  • 36
  • Highly Influential
  • PDF
An approximation property for Teichmüller points
  • 13
  • PDF
Rational points in Henselian discrete valuation rings
  • 130
  • PDF
L'automorphisme de Frobenius des vecteurs de Witt
  • 12
  • PDF
A model complete theory of valued D-fields
  • T. Scanlon
  • Computer Science, Mathematics
  • Journal of Symbolic Logic
  • 2000
  • 53
  • Highly Influential
  • PDF
...
1
2
3
...