Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation

@article{Alagic2010ApproximatingT3,
  title={Approximating Turaev-Viro 3-manifold invariants is universal for quantum computation},
  author={Gorjan Alagic and Stephen P. Jordan and Robert K{\"o}nig and Ben Reichardt},
  journal={Physical Review A},
  year={2010}
}
The Turaev-Viro invariants are scalar topological invariants of compact, orientable 3-manifolds. We give a quantum algorithm for additively approximating Turaev-Viro invariants of a manifold presented by a Heegaard splitting. The algorithm is motivated by the relationship between topological quantum computers and (2+1)-D topological quantum field theories. Its accuracy is shown to be nontrivial, as the same algorithm, after efficient classical preprocessing, can solve any problem efficiently… Expand

Figures from this paper

Approximating the Turaev-Viro Invariant of Mapping Tori is Complete for One Clean Qubit
TLDR
It is shown that the problem of estimating the Fibonacci version of the Turaev-Viro invariant of a mapping torus is a complete problem for the one clean qubit complexity class (DQC1). Expand
Possible universal quantum algorithms for generalized Turaev-Viro invariants
An emergent trend in quantum computation is the topological quantum computation (TQC). Briefly, TQC results from the application of quantum computation with the aim to solve the problems of quantumExpand
Quantum Fourier Transforms and the Complexity of Link Invariants for Quantum Doubles of Finite Groups
TLDR
It is proved that, for groups which satisfy certain properties, the probability of success of any randomized computation can be approximated to within any $${\varepsilon}$$ε by the plat closure, and the question of simulating anyonic computation in groups uniformly as a function of the group size is made partial progress. Expand
(3 + 1)-dimensional topological phases and self-dual quantum geometries encoded on Heegaard surfaces
A bstractWe apply the recently suggested strategy to lift state spaces and operators for (2 + 1)-dimensional topological quantum field theories to state spaces and operators for a (3 + 1)-dimensionalExpand
Algorithms and Complexity for Turaev-Viro Invariants
TLDR
The Turaev-Viro invariants are a powerful family of topological invariants for distinguishing between different 3-manifolds, but current algorithms to compute them require exponential time. Expand
Ja n 20 17 ( 3 + 1 ) – dimensional topological phases and self – dual quantum geometries encoded on Heegard surfaces
We apply the recently suggested strategy to lift state spaces and operators for (2 + 1)– dimensional topological quantum field theories to state spaces and operators for a (3 + 1)– dimensional TQFTExpand
Systematic distillation of composite Fibonacci anyons using one mobile quasiparticle
  • B. Reichardt
  • Physics, Computer Science
  • Quantum Inf. Comput.
  • 2012
TLDR
It is shown how to simulate universal quantum computation by braiding one quasiparticle and with only one measurement, to read out the result. Expand
QUANTUM DISCORD AND QUANTUM COMPUTING — AN APPRAISAL
TLDR
Emphasis is placed on the "power of one qubit" model, and the boundary between quantum and classical correlations as delineated by quantum discord, and a recent result by Eastin on the role of this boundary in the efficient classical simulation of quantum computation is discussed. Expand
Institute for Quantum Information Findings – 2009-10
    Quantum information science is an exciting emerging field that addresses how fundamental physical laws can be harnessed to dramatically improve the acquisition, transmission, and processing ofExpand
    Partial-indistinguishability obfuscation using braids
    TLDR
    A new notion of obfuscation is proposed, which is based on computationally universal groups with efficiently computable normal forms, and appears to be incomparable with existing definitions, and can be met by polynomial-time algorithms. Expand
    ...
    1
    2
    ...

    References

    SHOWING 1-10 OF 41 REFERENCES
    Quantum Invariants of Knots and 3-Manifolds
    This monograph, now in its second revised edition, provides a systematic treatment of topological quantum field theories in three dimensions, inspired by the discovery of the Jones polynomial ofExpand
    Quantum computation and quantum information
    • T. Paul
    • Mathematics, Computer Science
    • Mathematical Structures in Computer Science
    • 2007
    This special issue of Mathematical Structures in Computer Science contains several contributions related to the modern field of Quantum Information and Quantum Computing. The first two papers dealExpand
    On Witten’s 3-manifold Invariants
    I distributed a preliminary version of some notes on Witten's recently discovered 3-manifold invariants. For various reasons the paper was never completed and published. Nevertheless, many peopleExpand
    Conformal field theory and topology
    Introduction Geometric aspects of conformal field theory Jones-Witten theory Chern-Simons perturbation theory Further developments and prospects Bibliography Index.
    Zur dreidimensionalen Topologie
    Die folgenden Betrachtungen sind dem sog. Heegaard Diagramm dreidimensionaler Manuigfaltigkeiten gewidmet. Unter einem solchen Diagramm versteht man ein gewisses kombinatorisches Schema, das, jedochExpand
    “A and B”:
    Direct fabrication of large micropatterned single crystals. p1205 21 Feb 2003. (news): Academy plucks best biophysicists from a sea of mediocrity. p994 14 Feb 2003.
    Ann
    Aaron Beck’s cognitive therapy model has been used repeatedly to treat depression and anxiety. The case presented here is a 34-year-old female law student with an adjustment disorder with mixedExpand
    39
    • 3089
    • 2010
    Commun
    • Math. Phys. 227, 587
    • 2002
    Kitaev
    • and Z. Wang, Comm. Math. Phys. 227, 587
    • 2002
    ...
    1
    2
    3
    4
    5
    ...