Approximate Algorithms on Lattices with Small Determinant


In this paper, we propose approximate lattice algorithms for solving the shortest vector problem (SVP) and the closest vector problem (CVP) on an n-dimensional Euclidean integral lattice L. Our algorithms run in polynomial time of the dimension and determinant of lattices and improve on the LLL algorithm when the determinant of a lattice is less than 2 2/4… (More)