Apollonian Tiling, the Lorentz Group and Regular Trees

  title={Apollonian Tiling, the Lorentz Group and Regular Trees},
  author={Bo Ss Oderberg},
  • Bo Ss Oderberg
  • Published 1992
The Apollonian tiling of the plane into circles is analyzed with respect to its group properties. The relevant group, which is non-compact and discrete, is found to be identical to the symmetry group of a particular geometric tree-graph in hyperbolic three-space. A linear recursive method to compute the radii is obtained. Certain modiications of the problem are investigated, and relations to other problems, such as the universal scaling of circle-maps, are pointed out. 

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-5 of 5 references

J. Phys. A: Math. Gen

  • S S Manna, H J Herrmann
  • J. Phys. A: Math. Gen
  • 1991

HLRZ preprint 89

  • S S Manna, T Vicsek
  • HLRZ preprint 89
  • 1989

Phys. Rev. A

  • T C Halsey, M H Jensen, L P Kadanoo, I Procaccia, B I Shraiman
  • Phys. Rev. A
  • 1986

Physica Scripta

  • P Cvitanovi C, B Shraiman, B Ss, Oderberg
  • Physica Scripta
  • 1985

Z. A. Melzak, Math. Comput

  • Z. A. Melzak, Math. Comput
  • 1969

Similar Papers

Loading similar papers…