• Corpus ID: 245853535

Anisotropic Sobolev spaces with weights

@inproceedings{Metafune2021AnisotropicSS,
  title={Anisotropic Sobolev spaces with weights},
  author={Giorgio Metafune and Luigi Negro and Chiara Spina},
  year={2021}
}
We study Sobolev spaces with weights in the half-space R + = {(x, y) : x ∈ R N , y > 0}, adapted to the singular elliptic operators L = y∆x + y α2 ( Dyy + c y Dy − b y ) 

A unified approach to degenerate problems in the half-space

Degenerate operators on the half-line

This work studies elliptic and parabolic problems governed by the singular elliptic operators yαDyy+cyDy-V(y),α∈R with V as potential having nonnegative real part.

References

SHOWING 1-10 OF 19 REFERENCES

A unified approach to degenerate problems in the half-space

L estimates for the Caffarelli-Silvestre extension operators

Asymptotic behaviour for elliptic operators with second-order discontinuous coefficients

Abstract We study the behaviour at infinity, in suitable weighted L p {L^{p}} -norms, of solutions of parabolic problems associated to the second order elliptic operator L = Δ + ( a - 1 ) ⁢ ∑ i , j =

Weighted Calderón–Zygmund and Rellich inequalities in $$L^p$$Lp

We find necessary and sufficient conditions for the validity of weighted Rellich and Calderón–Zygmund inequalities with respect to $$L^p$$Lp-norm, $$1\le p \le \infty $$1≤p≤∞, for functions in the

Kernel estimates for elliptic operators with second-order discontinuous coefficients

We study parabolic problems associated to the second-order elliptic operator L=Δ+(a-1)∑i,j=1Nxixj|x|2Dij+cx|x|2·∇-b|x|-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym}

Maximal regularity for elliptic operators with second-order discontinuous coefficients

We prove maximal regularity for parabolic problems associated to the second-order elliptic operator L=Δ+(a-1)∑i,j=1Nxixj|x|2Dij+cx|x|2·∇-b|x|-2\documentclass[12pt]{minimal} \usepackage{amsmath}

Gradient Estimates for Elliptic Operators with Second-Order Discontinuous Coefficients

We consider the second-order elliptic operator L=Δ+(a-1)∑i,j=1Nxixj|x|2Dij+cx|x|2·∇-b|x|2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts}

Degenerate operators on the half-line

This work studies elliptic and parabolic problems governed by the singular elliptic operators yαDyy+cyDy-V(y),α∈R with V as potential having nonnegative real part.

Espaces intermédiaires entre espaces de Sobolev avec poids

© Scuola Normale Superiore, Pisa, 1963, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze »

Introduction de poids dans l'étude de problèmes aux limites

© Annales de l’institut Fourier, 1962, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions