Analytic and algorithmic solution of random satisfiability problems.

Abstract

We study the satisfiability of random Boolean expressions built from many clauses with K variables per clause (K-satisfiability). Expressions with a ratio alpha of clauses to variables less than a threshold alphac are almost always satisfiable, whereas those with a ratio above this threshold are almost always unsatisfiable. We show the existence of an intermediate phase below alphac, where the proliferation of metastable states is responsible for the onset of complexity in search algorithms. We introduce a class of optimization algorithms that can deal with these metastable states; one such algorithm has been tested successfully on the largest existing benchmark of K-satisfiability.

Extracted Key Phrases

2 Figures and Tables

02040'03'05'07'09'11'13'15'17
Citations per Year

519 Citations

Semantic Scholar estimates that this publication has 519 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Mzard2002AnalyticAA, title={Analytic and algorithmic solution of random satisfiability problems.}, author={Marc M{\'e}zard and Giorgio Parisi and Riccardo Zecchina}, journal={Science}, year={2002}, volume={297 5582}, pages={812-5} }