Analysis of the accuracy of the numerical reflection coefficient of the finite-difference time-domain method at planar material interfaces

@article{Christ2006AnalysisOT,
  title={Analysis of the accuracy of the numerical reflection coefficient of the finite-difference time-domain method at planar material interfaces},
  author={Andreas H. Christ and Stefan Benkler and Jurg Frohlich and Niels Kuster},
  journal={IEEE Transactions on Electromagnetic Compatibility},
  year={2006},
  volume={48},
  pages={264-272}
}
This paper presents a rigorous analysis of the numerical error of the reflection coefficient of the finite-difference time-domain (FDTD) algorithm at planar material boundaries. The derived expressions show that the numerical reflection depends on a large number of parameters, such as the grid resolution and the time step, the frequency, the angle, and the polarization of the incident wave. In conclusion, the FDTD algorithm does not accurately fulfil the boundary conditions for the continuity… CONTINUE READING

Citations

Publications citing this paper.
Showing 1-8 of 8 extracted citations

Numerical Reflection Coefficients of ID-FDTD Scheme for Planar Dielectric Interface

IEEE Transactions on Antennas and Propagation • 2011
View 8 Excerpts
Highly Influenced

Time domain analysis of waves in layered lossy dispersive media

2012 Asia-Pacific Symposium on Electromagnetic Compatibility • 2012
View 1 Excerpt

References

Publications referenced by this paper.
Showing 1-10 of 17 references

Correction of numerical phase velocity errors in nonuniform FDTD meshes

A. Christ, J. Fröhlich, N. Kuster
IEICE Trans. Commun., vol. E85-B, pp. 2904–2915, Dec. 2002. • 2002
View 2 Excerpts

Computational Electromagnetics: The Finite-Difference Time-Domain Method, 2nd ed

A. Taflove, S. C. Hagness
2000
View 1 Excerpt

Plane waves and planar boundaries in FDTD simulations

J. B. Schneider, R. J. Kruhlak
USNC/URSI National Radio Science Meeting, Salt Lake City, UT, Jul. 2000, p. 23. • 2000
View 1 Excerpt

The secondorder condition for the dielectric interface orthogonal to the Yee-lattice axis in the FDTD scheme

T. Hirono, Y. Shibata, W. W. Lui, S. Seki, Y. Yoshikuni
IEEE Microw. Guided Wave Lett., vol. 10, no. 9, pp. 359–361, Sep. 2000. • 2000
View 2 Excerpts

A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonantors

S. Dey, R. Mittra
IEEE Trans. Microw. Theory Tech., vol. 47, no. 9, pp. 1737–1739, Sep. 1999. • 1999
View 1 Excerpt

An algorithm for computation of the power deposition in human tissue

K. Caputa, M. Okoniewski, M. A. Stuchly
IEEE Antennas Propag. Mag., vol. 41, no. 4, pp. 102–109, Sep. 1999. • 1999
View 1 Excerpt

Contributions toward uncertainty assessments and error minimization of FDTD simulations involving complex dielectric bodies,

M. Burkhardt
Ph.D. dissertation, ETH Nr. 13176, • 1999
View 1 Excerpt

Locally tensor conformal FDTD method for modeling arbitrary dielectric surfaces

J.-Y. Lee, N.-H. Myung
Microw. Opt. Technol. Lett., vol. 23, no. 4, pp. 245–249, 1999. • 1999
View 1 Excerpt

Staircasing errors in FDTD at an air-dielectric interface

A. Akyurtlu, D. H. Werner, V. Veremey, D. J. Steich, K. Aydin
IEEE Microwave Guided Wave Letters, vol. 9, no. 11, pp. 444–446, Nov. 1999. • 1999
View 1 Excerpt

Similar Papers

Loading similar papers…