Analysis of local helix geometry in three B-DNA decamers and eight dodecamers.


Local variations in B-DNA helix structure are compared among three decamers and eight dodecamers, which contain examples of all ten base-pair step types. All pairwise combinations of helix parameters are compared by linear regression analysis, in a search for internal relationships as well as correlations with base sequence. The primary conclusions are: (1) Three-center hydrogen bonds between base-pairs occur frequently in the major groove at C-C, C-A, A-A and A-C steps, but are less convincing at C-C and C-T steps in the minor groove. The requirements for large base-pair propeller are (1) that the base-pair should be A.T rather than G.C, and (2) that it be involved in a major groove three-center hydrogen bond with the following base-pair. Either condition alone is insufficient. Hence, a large propeller is expected at the leading base-pair of A-A and A-C steps, but not at A-T, T-A, C-A or C-C steps. (2) A systematic and quantitative linkage exists between helix variables twist, rise, cup and roll, of such strength that the rise between base-pairs can hardly be described as an independent variable at all. Two typical patterns of behavior are observed at steps from one base-pair to the next: high twist profile (HTP), characterized by high twist, low rise, positive cup and negative roll, and low twist profile (LTP), marked by low twist, high rise; negative cup and positive roll. Examples of HTP are steps G-C, G-A and Y-C-A-R, where Y is pyrimidine and R is purine. Examples of LTP steps are C-G, G-G, A-G and C-A steps other than Y-C-A-R. (3) The minor groove is especially narrow across the two base-pairs of the following steps: A-T, T-A, A-A and G-A. (4) In general, base step geometry cannot be correlated solely with the bases that define the step in question; the two flanking steps also must be taken into account. Hence, local helix structure must be studied in the context, not of two base-pairs: A-B, but of four: x-A-B-y. Calladine's rules, although too simple in detail, were correct in defining the length of sequence over which a given perturbation is expressed. Whereas ten different two-base steps are possible, allowing for the identity of complementary sequences, there are 136 different four-base steps. Only 33 of these 136 four-base steps are represented in the decamer and dodecamer structures solved to date, and hence it is premature to try to set up detailed structural algorithms. (5) The sugar-phosphate backbone chains of B-DNA place strong limits on sequence-induced structural variation, damping down most variables within four or five base-pairs, and preventing purine-purine anti-anti mismatches from causing bulges in the double helix. Hence, although short-range sequence-induced deformations (or deformability) are observed, long-range deformations propagated down the helix are not to be expected.


Citations per Year

157 Citations

Semantic Scholar estimates that this publication has 157 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Yanagi1991AnalysisOL, title={Analysis of local helix geometry in three B-DNA decamers and eight dodecamers.}, author={Keisuke Yanagi and Gilbert G. Priv{\'e} and Richard E. Dickerson}, journal={Journal of molecular biology}, year={1991}, volume={217 1}, pages={201-14} }