An obstruction to homogeneous manifolds being Kähler

@article{Gilligan2005AnOT,
  title={An obstruction to homogeneous manifolds being K{\"a}hler},
  author={B Gilligan},
  journal={Annales de l'Institut Fourier},
  year={2005},
  volume={55},
  pages={229-241}
}
  • B. Gilligan
  • Published 2005
  • Mathematics
  • Annales de l'Institut Fourier
Soit G un groupe de Lie complexe, H un sous-groupe complexe ferme de G, et X := G/H. Soit R le radical et S un sous-groupe semi-simple maximal de G. La construction d'exemples de varietes non compactes X homogenes d'un produit semi-direct G = S × R, possedant une metrique kahlerienne pas necessairement invariante par G, a suscite ce travail. L'orbite S/S n H de S dans X est kahlerienne. Donc S n H est un sous-groupe algebrique de S [4]. La presence d'une structure kahlerienne sur X devrait… 

References

SHOWING 1-10 OF 20 REFERENCES

On Complex Homogeneous Spaces with Top Homology in Codimension Two

Abstract Define dx to be the codimension of the top nonvanishing homology group of the manifold X with coefficients in 2. We investigate homogeneous spaces X := G/H, where G is a connected complex

Invariant plurisubharmonic functions and hypersurfaces on semisimple complex Lie groups

A connected complex Lie group G is called (linear) reductive, if it is the complexification K r of a maximal compact subgroup K of G. Such a group G is up to a finite (central) covering group

Invariant analytic hypersurfaces in complex Lie groups

  • B. Gilligan
  • Mathematics
    Bulletin of the Australian Mathematical Society
  • 2004
Suppose G is a complex Lie group and H is a closed complex subgroup of G. Let G′ denote the commutator subgroup of G. If there are no nonconstant holomorphic functions on G/H and H is not contained

Homogeneous Complex Manifolds with more than One End

For homogeneous spaces of a (real) Lie group one of the fundamental results concerning ends (in the sense of Freudenthal [8] ) is due to A. Borel [6]. He showed that if X = G/H is the homogeneous

On holomorphically separable complex solv-manifolds

© Annales de l’institut Fourier, 1986, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions

On the structure of complex solvmanifolds

A connected complex space X is called a solvmanifold if there is a connected solvable complex Lie group G which acts holomorphically and transitively on it. The goal of this paper is to understand

On non-compact complex nil-manifolds

Given a complex manifold X, it is natural to consider the quotient space X~ ~, where p~q whenever f(p)=f(q) for every fe(9(X). In the best of all worlds one would hope that X / ~ is a Stein space,

Non-compact Complex Lie Groups without Non-constant Holomorphic Functions

In this paper we shall consider, on the one hand, a complex Lie group with sufficiently many holomorphic functions and, on the other hand, a complex Lie group whose holomorphic functions are

Discrete subgroups of Lie groups

Preliminaries.- I. Generalities on Lattices.- II. Lattices in Nilpotent Lie Groups.- III. Lattices in Solvable Lie Groups.- IV. Polycyclic Groups and Arithmeticity of Lattices in Solvable Lie

Sur les fonctions triplement périodiques de deux variables