• Corpus ID: 115160547

An integrability condition for fields of nilpotent endomorphisms

@article{Boubel2010AnIC,
  title={An integrability condition for fields of nilpotent endomorphisms},
  author={Charles Boubel},
  journal={arXiv: Differential Geometry},
  year={2010}
}
  • C. Boubel
  • Published 4 March 2010
  • Mathematics
  • arXiv: Differential Geometry
We give a necessary and sufficient condition on the $1$-jet of a field of nilpotent endomorphisms to be integrable. Together with the well known corresponding condition for an almost complex structure, the nullity of its Nijenhuis tensor, this gives an integrability condition for any field of endomorphisms. 
3 Citations
On a new class of holonomy groups in pseudo-Riemannian geometry
Holonomy groups were introduced by Elie Cartan in the twenties [15, 16] for´the study of Riemannian symmetric spaces and since then the classificationof holonomy groups has remained one of the
Nijenhuis geometry

References

SHOWING 1-9 OF 9 REFERENCES
SOME INTEGRATION PROBLEMS IN ALMOST-COMPLEX AND COMPLEX MANIFOLDS
The theory of almost-complex manifolds leads to a number of problems which properly belong to the field of differential equations. This paper deals with three such problems. The first concerns
Complex Analytic Coordinates in Almost Complex Manifolds
A manifold is called a complex manifold if it can be covered by coordinate patches with complex coordinates in which the coordinates in overlapping patches are related by complex analytic
Tenseur de Nijenhuis et intégralité des G-structures définies par une 1-forme vectorielle, O-déformable
L'etude des systemes completement integrables [6] a mis en evidence le role principal joue par les structures definies par un champ d'endomorphismes dont la torsion de Nijenhuis est nulle. Nous
Sur le problème d'équivalence de certaines structures infinitésimales
RésuméAprès avoir rappelé la définition et quelques propriétés des pseudogroupes de Lie, on définit les structures infinitésimales régulières. On peut toujours associer des connexions affines à de
The analysis of linear partial differential operators
the analysis of linear partial differential operators i distribution theory and fourier rep are a good way to achieve details about operating certainproducts. Many products that you buy can be
The Analysis of Linear Partial Differential Operators III
Rigid transformations groups
  • In: Géométrie différentielle
  • 1986
Xn−1-forming sets of eigenfunctions
  • Indag. Math. 13
  • 1951