# An infinitely generated intersection of geometrically finite hyperbolic groups

@inproceedings{Susskind2001AnIG, title={An infinitely generated intersection of geometrically finite hyperbolic groups}, author={Perry Susskind}, year={2001} }

Two discrete, geometrically finite subgroups of the isometrics of hyperbolic n-space (n > 4) are defined whose intersection is infinitely generated. This settles, in dimensions 4 and above, a long-standing question in Kleinian and hyperbolic groups reiterated at a problem session chaired by Bernard Maskit at the AMS meeting 898, March 3-5, 1995, a conference in honor of Bernard Maskit's 60th birthday.

## 4 Citations

### Infinite index subgroups and finiteness properties of intersections of geometrically finite groups

- Mathematics
- 2007

### LIMIT SETS AND COMMENSURABILITY OF KLEINIAN GROUPS

- MathematicsBulletin of the Australian Mathematical Society
- 2010

Abstract In this paper, we obtain several results on the commensurability of two Kleinian groups and their limit sets. We prove that two finitely generated subgroups G1 and G2 of an infinite…

### ON KLEINIAN GROUPS WITH THE SAME SET OF AXES

- MathematicsBulletin of the Australian Mathematical Society
- 2008

Abstract J. W. Anderson (1996) asked whether two finitely generated Kleinian groups $G_{1}, G_{2}\subset \mathrm {Isom}(\mathbb {H}^{n})$ with the same set of axes are commensurable. We give some…

### A combination theorem for convex hyperbolic manifolds, with applications to surfaces in 3‐manifolds

- Mathematics
- 2008

We prove the convex combination theorem for hyperbolic n‐manifolds. Applications are given both in high dimensions and in three dimensions. One consequence is that given two geometrically finite…

## References

SHOWING 1-10 OF 12 REFERENCES

### Geometrical Finiteness for Hyperbolic Groups

- Mathematics
- 1993

Abstract In this paper, we give an account of the notion of geometrical finiteness as applied to discrete groups acting on hyperbolic space of any dimension. We prove the equivalence of various…

### Discrete Groups of Motions

- MathematicsCanadian Journal of Mathematics
- 1960

This paper deals with the discrete groups of rigid motions of the hyperbolic plane. It is known (12) that the finitely generated, orientation-preserving groups have the following presentations:…

### Intersections of analytically and geometrically finite subgroups of Kleinian groups

- Mathematics
- 1994

We consider the intersection of pairs of subgroups of a Kleinian group of the second kind K whose limit sets intersect, where one subgroup G is analytically finite and the other J is geometrically…

### The limit set intersection theorem for finitely generated Kleinian groups

- Mathematics
- 1996

The proof of the Theorem proceeds by showing that it holds in some special cases involving Kleinian groups with connected limit sets, and then extending to the general case by using a decomposition…

### Limit points of Kleinian groups and finite sided fundamental polyhedra

- Mathematics
- 1974

Let G be a discrete subgroup of SL(2, C)/{• 1}. Then G operates as a discontinuous group of isometrics on hyperbolic 3-space, which we regard as the open unit ball B a in Euclidean 3-space E a. G…

### Selected problems in Kleinian groups and hyperbolic geometry

- Chemistry
- 1997

A process for preparing azetidinones of the formulae 1 and 2A and the stereoisomers of the latter of formula 2B 1 2A 2B wherein R is an amino-protecting group commonly used in penicillin chemistry…