# An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series

@article{Krattenthaler2003AnIO, title={An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series}, author={Christian Krattenthaler and Tanguy Rivoal}, journal={The Ramanujan Journal}, year={2003}, volume={13}, pages={203-219} }

We give a new proof of a theorem of Zudilin that equates a very-well-poised hypergeometric series and a particular multiple integral. This integral generalizes integrals of Vasilenko and Vasilyev which were proposed as tools in the study of the arithmetic behaviour of values of the Riemann zeta function at integers. Our proof is based on limiting cases of a basic hypergeometric identity of Andrews.

## 32 Citations

A family of q-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial

- Mathematics
- 2019

We prove a two-parameter family of $q$-hypergeometric congruences modulo the fourth power of a cyclotomic polynomial. Crucial ingredients in our proof are George Andrews' multiseries extension of the…

The Hopf algebra of (q)multiple polylogarithms with non-positive arguments

- Mathematics
- 2015

We consider multiple polylogarithms in a single variable at non-positive integers. Defining a connected graded Hopf algebra, we apply Connes' and Kreimer's algebraic Birkhoff decomposition to…

On a linear form for Catalan's constant

- Mathematics
- 2008

It is shown how Andrews' multidimensional extension of Watson's transformation between a very-well-poised $_8\phi_7$-series and a balanced $_4\phi_3$-series can be used to give a straightforward…

Arithmetic hypergeometric series

- Mathematics
- 2011

The main goal of this survey is to give common characteristics of auxiliary hypergeometric functions (and their generalisations), functions which occur in number-theoretic problems. Originally…

Renormalisation of q-Regularised Multiple Zeta Values

- Mathematics
- 2015

We consider a particular one-parameter family of q-analogues of multiple zeta values. The intrinsic q-regularisation permits an extension of these q-multiple zeta values to negative integers.…

Multiple zeta values, Pad\'e approximation and Vasilyev's conjecture

- Mathematics
- 2013

Sorokin gave in 1996 a new proof that pi is transcendental. It is based on a simultaneous Pad\'e approximation problem involving certain multiple polylogarithms, which evaluated at the point 1 are…

Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order ε-expansion of generalized hypergeometric functions with one half-integer value of parameter

- Mathematics
- 2007

We continue the study of the construction of analytical coefficients of the ?-expansion of hypergeometric functions and their connection with Feynman diagrams. In this paper, we show the following…

A parametrized generalization of Ohno's relation for multiple zeta values

- Mathematics
- 2009

In this paper, we prove that certain parametrized multiple series which generalize multiple zeta values satisfy the same relation as Ohno's relation for multiple zeta values. This is a parametrized…

RENORMALISATION GROUP FOR MULTIPLE ZETA VALUES

- Mathematics
- 2015

Calculating multiple zeta values at arguments of any sign in a way that is compatible with both the quasi-shuffle product as well as meromorphic continuation, is commonly referred to as the…

## References

SHOWING 1-10 OF 37 REFERENCES

A transcendence measure for π2

- Mathematics
- 1996

A new proof of the fact that π2 is transcendental is proposed. A modification of Hermite's method for an expressly constructed Nikishin system is used. The Beukers integral, which was previously used…

Generalized Hypergeometric Functions

- Mathematics
- 1990

Introduction Multiplication by Xu (Gauss contiguity) Algebraic theory Variation of Wa with g Analytic theory Deformation theory Structure of Hg Linear differential equations over a ring Singularities…

ANALYTIC CONTINUATION OF MULTIPLE ZETA FUNCTIONS

- Mathematics
- 1999

In this paper we shall define the analytic continuation of the mul- tiple (Euler-Riemann-Zagier) zeta functions of depth d: 1 ~~~~~~~d

Abel-Rothe Type Generalizations of Jacobi's Triple Product Identity

- Mathematics
- 2005

Using a simple classical method we derive bilateral series identities from terminating ones. In particular, we show how to deduce Ramanujan's 1ψ1 summation from the q-Pfaff-Saalschutz summation.…

Basic Hypergeometric Series

- Mathematics
- 1990

Foreword Preface 1. Basic hypergeometric series 2. Summation, transformation, and expansion formulas 3. Additional summation, transformation, and expansion formulas 4. Basic contour integrals 5.…

A Note on the Irrationality of ζ(2) and ζ(3)

- Philosophy
- 1979

At the “Journees Arithmetiques” held at Marseille-Luminy in June 1978, R. Apery confronted his audience with a miraculous proof for the irrationality of ζ(3) = l-3+ 2-3+ 3-3 + .... The proof was…

Theory and applications of special functions : a volume dedicated to Mizan Rahman

- Mathematics
- 2005

Mizan Rahman, His Mathematics and Literary Writings.- On the Completeness of Sets of q-Bessel Functions J?(3)(x q).- a-Gaussian Polynomials and Finite Rogers-Ramanujan Identities.- On a Generalized…

Formes lin\'eaires en polyz\^etas et int\'egrales multiples

- Mathematics
- 2002

The problem we consider is to define families of n-dimensional integrals, endowed with group actions as in Rhin-Viola's work on irrationality measures of $\zeta(2)$ and $\zeta(3)$, the values of…

Generalized hypergeometric series

- Mathematics
- 1935

This also gives in the paper T. H. Koornwinder, Orthogonal polynomials with weight function (1− x)α(1 + x)β + Mδ(x + 1) + Nδ(x− 1), Canad. Math. Bull. 27 (1984), 205–214 the identitity (2.5) with N =…