An experimental study of exhaustive solutions for the Mastermind puzzle


Mastermind is in essence a search problem in which a string of symbols that is kept secret must be found by sequentially playing strings that use the same alphabet, and using the responses that indicate how close are those other strings to the secret one as hints. Although it is commercialized as a game, it is a combinatorial problem of high complexity, with applications on fields that range from computer security to genomics. As such a kind of problem, there are no exact solutions; even exhaustive search methods rely on heuristics to choose, at every step, strings to get the best possible hint. These methods mostly try to play the move that offers the best reduction in search space size in the next step; this move is chosen according to an empirical score. However, in this paper we will examine several state of the art exhaustive search methods and show that another factor, the presence of the actual solution among the candidate moves, or, in other words, the fact that the actual solution has the highest score, plays also a very important role. Using that, we will propose new exhaustive search approaches that obtain results which are comparable to the classic ones, and besides, are better suited as a basis for non-exhaustive search strategies such as evolutionary algorithms, since their behavior in a series of key indicators is better than the classical algorithms.

Extracted Key Phrases

30 Figures and Tables

Cite this paper

@article{Guervs2012AnES, title={An experimental study of exhaustive solutions for the Mastermind puzzle}, author={Juan Juli{\'a}n Merelo Guerv{\'o}s and Antonio Mora Garc{\'i}a and Carlos Cotta and Thomas Philip Runarsson}, journal={CoRR}, year={2012}, volume={abs/1207.1315} }