An error bound for approximate solutions of two-point boundary value problems

Abstract

A new error bound for any approximate solutionu of the two-point boundary value problemAy:=−(py′)′+qy=f,y(0)=0, y(1)=0, is proposed. This error bound depends on the deviationAu−fjust like the one which is proportional to ‖Au−f‖2, but in the case of Ritz-Galerkin approximations by cubic splines it behaves asymptotically likeh 3, whereh is the knot distance, i.e., it is by one order of magnitude better. An important advantage of this error bound is that it can be used even in the case of generalized solutions and of piecewise linear approximations. An error bound for the approximation of the derivative results also from these considerations. This error bound behaves in the above case asymptotically also likeh 3, i.e. it has the same asymptotic behaviour as the actual approximation error of the derivative. Eine neue Fehlerschranke für irgendeine Näherungslösungu des Zweipunkt-RandwertproblemsAy:=−(py′)′+qy=f,y(0)=0,y(1)=0, wird präsentiert. Diese Fehlerschranke ist abhängig von der AbweichungAu−f, genau so wie jene, die proportional zu ‖Au−f‖2 ist; im Fall von Ritz-Galerkin-Approximationen mit kubischen Splines verhält sie sich jedoch asymptotisch wieh 3, wobei,h der Knotenabstand ist, d.h. sie ist um eine Größenordnung besser. Ein wichtiger Vorteil dieser Fehlerschranke ist, daß sie sowohl im Fall einer verallgemeinerten Lösung, als auch im Fall einer stückweise linearen Approximation benutzt werden kann. Eine Fehlerschranke für die Approximation der Ableitung ergibt sich ebenfalls aus diesen Betrachtungen. Diese Fehlerschranke verhält sich im obigen Fall asymptotisch auch wieh 3, d. h. genau so, wie der eigentliche Fehler.

DOI: 10.1007/BF02239753

Cite this paper

@article{Kioustelidis1989AnEB, title={An error bound for approximate solutions of two-point boundary value problems}, author={John B. Kioustelidis}, journal={Computing}, year={1989}, volume={42}, pages={259-270} }