Corpus ID: 119264493

An elementary proof for the dimension of the graph of the classical Weierstrass function

@inproceedings{Keller2014AnEP,
  title={An elementary proof for the dimension of the graph of the classical Weierstrass function},
  author={Gerhard Keller},
  year={2014}
}
  • Gerhard Keller
  • Published 2014
  • Mathematics
  • Let $W_{\lambda,b}(x)=\sum_{n=0}^\infty\lambda^n g(b^n x)$ where $b\geqslant2$ is an integer and $g(u)=\cos(2\pi u)$ (classical Weierstrass function). Building on work by Ledrappier (1992), Bar\'ansky, B\'ar\'any and Romanowska (2013) and Tsujii (2001), we provide an elementary proof that the Hausdorff dimension of $W_{\lambda,b}$ equals $2+\frac{\log\lambda}{\log b}$ for all $\lambda\in(\lambda_b,1)$ with a suitable $\lambda_b<1$. This reproduces results by Bar\'ansky, B\'ar\'any and… CONTINUE READING