An asymptotic formula for the number of irreducible transformation shift registers
@article{Cohen2015AnAF, title={An asymptotic formula for the number of irreducible transformation shift registers}, author={Stephen D. Cohen and Sartaj Ul Hasan and Daniel Panario and Qiang Wang}, journal={ArXiv}, year={2015}, volume={abs/1506.02548} }
9 Citations
On the number of irreducible linear transformation shift registers
- MathematicsDes. Codes Cryptogr.
- 2017
This work finds a bijection between Ram’s set to another set of irreducible polynomials which is easier to count, and gives a conjecture about the number of irReducible TSRs of any order.
Irreducible polynomials from a cubic transformation
- Mathematics
- 2021
Let R(x) = g(x)/h(x) be a rational expression of degree three over the finite field Fq. We count the irreducible polynomials in Fq[x], of a given degree, which have the form h(x) f · f ( R(x) ) for…
Primitive transformation shift registers over finite fields
- Computer Science, MathematicsJournal of Algebra and Its Applications
- 2019
This work considers systems which are efficient generalizations of LFSRs and produce pseudorandom vector sequences and gives certain results in this direction.
A note on the multiple-recursive matrix method for generating pseudorandom vectors
- Computer ScienceDiscret. Appl. Math.
- 2017
Cubic rational expressions over a finite field
- Mathematics
- 2021
We classify the cubic rational expressions g(x)/h(x) over a finite field, having at most three ramification points, under an equivalence relation given by preand post-composition with independent…
Unimodular polynomial matrices over finite fields
- MathematicsJournal of Algebraic Combinatorics
- 2020
We consider some combinatorial problems on matrix polynomials over finite fields. Using results from control theory, we give a proof of a result of Lieb, Jordan and Helmke on the number of linear…
Nonlinear vectorial primitive recursive sequences
- Mathematics, Computer ScienceCryptography and Communications
- 2017
The nonlinearly filtered multiple-recursive matrix generator for producing pseudorandom vectors based on some nonlinear schemes is considered and lower bounds for their componentwise linear complexity are given.
Скрученные $\sigma$-разделимые линейные рекуррентные последовательности максимального периода
- Matematicheskie Voprosy Kriptografii [Mathematical Aspects of Cryptography]
- 2022
Пусть $p$ - простое число, $R=\mathrm{GR}(q^d,p^d)$ - кольцо Галуа мощности $q^d$ и характеристики $p^d$, где $q = p^r$, $S=\mathrm{GR}(q^{nd},p^d)$ - расширение степени $n$ кольца $R$, $\sigma$ -…
Simple Linear Transformations 3 3 . Splitting Subspaces 7 4 . Density of Unimodular Polynomial Matrices 9
- Mathematics
- 2019
Abstract. We consider some combinatorial problems on matrix polynomials over finite fields. Using results from control theory we give a proof of a result of Helmke, Jordan and Lieb on the number of…
References
SHOWING 1-10 OF 30 REFERENCES
Enumeration of linear transformation shift registers
- MathematicsDes. Codes Cryptogr.
- 2015
This work deduces a theorem of Carlitz on the number of self-reciprocal irreducible monic polynomials of a given degree over a finite field from explicit formulae derived from results on TSRs.
Word-Oriented Transformation Shift Registers and Their Linear Complexity
- MathematicsSETA
- 2012
The notion of word-oriented nonlinearly filtered primitive transformation shift registers based on a Langford arrangement and their linear complexity are introduced.
Generalization of a theorem of Carlitz
- MathematicsFinite Fields Their Appl.
- 2011
Efficient linear feedback shift registers with maximal period
- Computer ScienceIACR Cryptol. ePrint Arch.
- 2003
An efficient family of linear feedback shift registers (LFSR's) with maximal period is introduced and is suitable for implementation in software, thus providing a solution to a recent challenge 8.
Mutual Irreducibility of Certain Polynomials
- MathematicsInternational Conference on Finite Fields and Applications
- 2003
The authors recently proved that over \(\mathbb{F}_2\), irreducible TSRs occur in pairs, now the results are generalized and extended for arbitrary finite fields.
Primitive polynomials, singer cycles and word-oriented linear feedback shift registers
- Mathematics, Computer ScienceDes. Codes Cryptogr.
- 2011
Using the structure of Singer cycles in general linear groups, we prove that a conjecture of Zeng et al. (Word-Oriented Feedback Shift Register: σ-LFSR, 2007) holds in the affirmative in a special…
Linear transformation shift registers
- Computer Science, MathematicsIEEE Trans. Inf. Theory
- 2003
It is proved that the characteristic polynomials of a pair of LFSRs are either both irreducible or both reducible for all transformations, which allows some time improvement when finding primitive TSRs.
Block companion Singer cycles, primitive recursive vector sequences, and coprime polynomial pairs over finite fields
- MathematicsFinite Fields Their Appl.
- 2011
UNIFORM DISTRIBUTION OF POLYNOMIALS OVER FINITE FIELDS
- Mathematics
- 1972
1. Let k be the finite field of order q = p. A polynomial Q(x) in M(n), the set of polynomials in k[x] of degree n, is defined to have factor pattern X = \...n" if Q factorises in k[x] into a product…