# An approximate functional equation for the Riemann zeta function with exponentially decaying error

@article{Jerby2021AnAF,
title={An approximate functional equation for the Riemann zeta function with exponentially decaying error},
author={Yochay Jerby},
journal={J. Approx. Theory},
year={2021},
volume={265},
pages={105551}
}
• Yochay Jerby
• Published 2021
• Computer Science, Mathematics
• J. Approx. Theory
It is known by a formula of Hasse-Sondow that the Riemann zeta function is given, for any $s=\sigma+it \in \mathbb{C}$, by $\sum_{n=0}^{\infty} \widetilde{A}(n,s)$ where $$\widetilde{A}(n,s):=\frac{1}{2^{n+1}(1-2^{1-s})} \sum_{k=0}^n \binom{n}{k}\frac{(-1)^k}{(k+1)^s} .$$ We prove the following approximate functional equation for the Hasse-Sondow presentation: For $\vert t \vert = \pi xy$ and $2y \neq (2N-1)\pi$ then  \zeta(s)= \sum_{n \leq x } \widetilde{A}(n,s)+\frac{\chi(s)}{1-2^{s… Expand
Explicit zero density estimate for the Riemann zeta-function near the critical line
• A. Simonič
• Mathematics
• Journal of Mathematical Analysis and Applications
• 2020
In 1946, A. Selberg proved $N(\sigma,T) \ll T^{1-\frac{1}{4} \left(\sigma-\frac{1}{2}\right)} \log{T}$ where $N(\sigma,T)$ is the number of nontrivial zeros $\rho$ of the Riemann zeta-function withExpand
The asymptotic expansion of a sum appearing in an approximate functional equation for the riemann zeta function
A representation for the Riemann zeta function valid for arbitrary complex s = σ + it is ζ(s) = ∑ ∞ n=0 A(n, s), where A(n, s) = 2 1− 2 n
A dynamic approach for the zeros of the Riemann zeta function - collision and repulsion
For N ∈ N consider the N -th section of the approximate functional equation