An application of Khovanov homology to quantum codes

Abstract

We use Khovanov homology to define families of LDPC quantum error-correcting codes: unknot codes with asymptotical parameters 32`+1 √ 8π` ; 1; 2 ; unlink codes with asymptotical parameters √ 3 2π`6 ; 2; 2 and (2, `)–torus link codes with asymptotical parameters ~n; 1; dn where dn > √ n 1.62 . 
DOI: 10.4171/AIHPD/6

Topics

4 Figures and Tables

Cite this paper

@article{Audoux2013AnAO, title={An application of Khovanov homology to quantum codes}, author={Benjamin Audoux}, journal={CoRR}, year={2013}, volume={abs/1307.4677} }