An Optimal Control Approach to Gradient-Index2 Design for Beam Reshaping

  title={An Optimal Control Approach to Gradient-Index2 Design for Beam Reshaping},
  author={J. Adriazola and Roy H. Goodman},
  journal={Journal of the Optical Society of America A},
We address the problem of reshaping light in the Schrödinger optics regime from the perspective of the optimal control theory. In technological applications, Schrödinger optics is often used to model a slowly varying amplitude of a para-axially propagating electric field where the square of the waveguide’s index of refraction is treated as the potential. The objective of the optimal control problem is to find the controlling potential which, together with the constraining Schrödinger dynamics… 

Figures from this paper


Quantum optimal control in a chopped basis: Applications in control of Bose-Einstein condensates
We discuss quantum optimal control of Bose-Einstein condensates trapped in magnetic microtraps. The objective is to transfer a condensate from the ground state to the first-excited state. This type
Optimal control of Bose-Einstein condensates in three dimensions
Ultracold gases promise many applications in quantum metrology, simulation and computation. In this context, optimal control theory (OCT) provides a versatile framework for the efficient preparation
Optimal quantum control of Bose-Einstein condensates in magnetic microtraps
Transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as wire currents or radio-frequency fields, is studied within the framework of optimal control
Simplified freeform optics design for complicated laser beam shaping.
A modified ray-mapping method is presented to simplify the freeform optics design for complicated optical field control and achieve a challenging task of producing two prescribed beam profiles on two successive target planes.
Optimal control technique for many-body quantum dynamics.
We present an efficient strategy for controlling a vast range of nonintegrable quantum many-body one-dimensional systems that can be merged with state-of-the-art tensor network simulation methods
Multi-element, multi-frequency lens transformations enabled by optical wavefront matching.
A multi-component multi-frequency lens transformation procedure based on the wavefront-matching (WFM) design methodology is presented and the procedure is applied to a number of optical systems to advocate its efficacy as a more general transformation method.
Numerical design of three-dimensional gradient refractive index structures for beam shaping.
A numerical design method is demonstrated for gradient refractive index (GRIN) beam shapers embedded in a medium and the solution is found using phase retrieval and a paraxial scalar wave beam propagation model.
Reduction-based strategy for optimal control of Bose-Einstein condensates.
This work proposes a control method based on first reducing the problem, using a Galerkin expansion, from a partial differential equation to a low-dimensional Hamiltonian ordinary differential equations system, and applies a two-stage hybrid control strategy that allows it to greatly reduce excitations both in the reduced model and the full GPE system.
Gradient-index design for mode conversion of diffracting beams.
A numerical GRIN design method is presented, where diffraction effects are considered in solving for the refractive index profile and reduced beam distortion is demonstrated in comparison to a purely geometric design method.
Computational techniques for a quantum control problem with H1-cost
A systematic comparison of L2- versus H1-based minimization shows that the choice of the appropriate functional space matters and has many consequences in the implementation of some optimization techniques.