An Inverse Spectral Problem for a Nonsymmetric Differential Operator: Uniqueness and Reconstruction Formula

@article{Ning2006AnIS,
  title={An Inverse Spectral Problem for a Nonsymmetric Differential Operator: Uniqueness and Reconstruction Formula},
  author={Wuqing Ning and Masahiro Yamamoto},
  journal={Integral Equations and Operator Theory},
  year={2006},
  volume={55},
  pages={273-304}
}
Abstract.We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x… CONTINUE READING

References

Publications referenced by this paper.