# An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity

@article{Carstensen2012AnAF, title={An Adaptive Finite Element Eigenvalue Solver of Asymptotic Quasi-Optimal Computational Complexity}, author={Carsten Carstensen and Joscha Gedicke}, journal={SIAM J. Numer. Anal.}, year={2012}, volume={50}, pages={1029-1057} }

This paper presents a combined adaptive finite element method with an iterative algebraic eigenvalue solver for a symmetric eigenvalue problem of asymptotic quasi-optimal computational complexity. The analysis is based on a direct approach for eigenvalue problems and allows the use of higher-order conforming finite element spaces with fixed polynomial degree. The asymptotic quasi-optimal adaptive finite element eigenvalue solver (AFEMES) involves a proper termination criterion for the algebraic…

## Figures and Topics from this paper

## 29 Citations

On the numerical analysis of eigenvalue problems

- Mathematics
- 2013

This thesis “on the numerical analysis of eigenvalue problems” consists of five major aspects of the numerical analysis of adaptive finite element methods for eigenvalue problems. The first three…

Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues

- Mathematics
- 2012

In this paper, we study an adaptive finite element method for multiple eigenvalue problems of a class of second order elliptic equations. By using some eigenspace approximation technology and its…

An adaptive finite element method with asymptotic saturation for eigenvalue problems

- Mathematics, Computer ScienceNumerische Mathematik
- 2014

An adaptive method based on nodal-patch refinement leads to an asymptotic error reduction property for the computed sequence of simple eigenvalues and eigenfunctions that justifies the use of the proven saturation property for a class of reliable and efficient hierarchical a posteriori error estimators.

An optimal adaptive FEM for eigenvalue clusters

- Mathematics, Computer ScienceNumerische Mathematik
- 2015

This paper proves the optimality of a practical adaptive algorithm based on a lowest-order conforming finite element method for eigenvalue clusters for the eigenvalues of the Laplace operator in terms of nonlinear approximation classes.

Adaptive Numerical Solution of Eigenvalue Problems arising from Finite Element Models. AMLS vs. AFEM

- Mathematics
- 2015

We discuss adaptive numerical methods for the solution of eigenvalue problems arising either
from the finite element discretization of a partial differential equation (PDE) or from discrete finite…

Adaptive $$\mathbf{hp}$$-FEM for eigenvalue computations

- MathematicsCalcolo
- 2019

We design an adaptive procedure for approximating a selected eigenvalue and its eigen-space for a second-order elliptic boundary-value problem, using an hp finite element method. Such iterative…

Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters

- Mathematics, Computer ScienceComput. Methods Appl. Math.
- 2014

An adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear approximation classes) for the approximation of the invariant subspace spanned by the eigenfunctions of the Eigenvalue cluster.

Interplay between discretization and algebraic computation in adaptive numerical solutionof elliptic PDE problems

- Mathematics
- 2013

The Adaptive Finite Element Method (AFEM) for approximating solutions of PDE boundary value and eigenvalue problems is a numerical scheme that automatically and iteratively adapts the finite element…

Morley Finite Element Method for the Eigenvalues of the Biharmonic Operator

- Mathematics
- 2014

This paper studies the nonconforming Morley finite element approximation of the eigenvalues of the biharmonic operator. A new $C^1$ conforming companion operator leads to an $L^2$ error estimate for…

Rate optimal adaptive FEM with inexact solver for nonlinear operators

- Mathematics
- 2016

We prove convergence with optimal algebraic rates for an adaptive finite element method for nonlinear equations with strongly monotone operator. Unlike prior works, our analysis also includes the…

## References

SHOWING 1-10 OF 40 REFERENCES

Convergence and optimal complexity of adaptive finite element eigenvalue computations

- Mathematics, Computer ScienceNumerische Mathematik
- 2008

Both uniform convergence and optimal complexity of the adaptive finite element eigenvalue approximation are proved.

A Convergent Adaptive Method for Elliptic Eigenvalue Problems

- Mathematics, Computer ScienceSIAM J. Numer. Anal.
- 2009

The error analysis extends the theory of convergence of adaptive methods for linear elliptic source problems to elliptic eigenvalue problems, and in particular deals with various complications which arise essentially from the nonlinearity of the eigen value problem.

Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations

- Mathematics, Computer ScienceNumer. Linear Algebra Appl.
- 2011

This work considers a new adaptive finite element (AFEM) algorithm for self-adjoint elliptic PDE eigenvalue problems that incorporates the inexact solutions of the resulting finite dimensional algebraic eigen value problems into the adaptation process.

A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems

- Mathematics
- 2003

This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof…

Convergence of adaptive finite element methods for eigenvalue problems

- Mathematics
- 2008

In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for…

Adaptive eigenvalue computation: complexity estimates

- Mathematics, Computer ScienceNumerische Mathematik
- 2008

It is shown under which circumstances the adaptive scheme exhibits in some sense asymptotically optimal complexity.

An oscillation-free adaptive FEM for symmetric eigenvalue problems

- Mathematics, Computer ScienceNumerische Mathematik
- 2011

The proposed AFEM monitors the edge-contributions in a bulk criterion and so enables a contraction property up to higher-order terms and global convergence and shows a high accuracy and the AFEM leads to optimal empirical convergence rates.

A posteriori error estimation for elliptic eigenproblems

- Mathematics, Computer ScienceNumer. Linear Algebra Appl.
- 2002

An a posteriori error estimator is presented for a subspace implementation of preconditioned inverse iteration, which derives from the well-known inverse iteration in such a way that the associated…

hp-Finite Elements for Elliptic Eigenvalue Problems: Error Estimates Which Are Explicit with Respect to Lambda, h, and p

- Mathematics, Computer ScienceSIAM J. Numer. Anal.
- 2010

In this paper, the maximal mesh width is determined—more precisely the minimal dimension of a finite element space—so that the asymptotic convergence estimates hold for the eigenvalues and the condition for eigenfunctions is slightly more restrictive.

Optimality of a Standard Adaptive Finite Element Method

- Mathematics, Computer ScienceFound. Comput. Math.
- 2007

An adaptive finite element method is constructed for solving elliptic equations that has optimal computational complexity and does not rely on a recurrent coarsening of the partitions.