Amoebas , Monge-ampère Measures , and Triangulations of the Newton Polytope

@inproceedings{Passare2004AmoebasM,
  title={Amoebas , Monge-amp{\`e}re Measures , and Triangulations of the Newton Polytope},
  author={Mikael Passare and Hans Rullg̊ard},
  year={2004}
}
The amoeba of a holomorphic function f is, by definition, the image in Rn of the zero locus of f under the simple mapping that takes each coordinate to the logarithm of its modulus. The terminology was introduced in the 1990s by the famous (biologist and) mathematician Israel Gelfand and his coauthors Kapranov and Zelevinsky (GKZ). In this paper we study a natural convex potential function N f with the property that its Monge-Ampère mass is concentrated to the amoeba of f . We obtain results of… CONTINUE READING
Highly Cited
This paper has 28 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 12 references

Discriminants

I. M. GELFAND, M. M. KAPRANOV, A. V. ZELEVINSKY
Resultants, and Multidimensional Determinants, Math. Theory Appl., Birkhäuser, Boston • 1994
View 3 Excerpts
Highly Influenced

RULLGÅRD, Amoebas of maximal area

H. G. MIKHALKIN
Internat. Math. Res. Notices 2001, • 2001
View 2 Excerpts

Discriminants , Resultants , and Multidimensional Determinants

M. M. KAPRANOV
Adv . Math . • 2000

Laurent determinants and arrangements of hyperplane amoebas

M. FORSBERG, M. PASSARE, A. TSIKH
Adv. Math. 151 • 2000
View 1 Excerpt

Stratification des espaces de polynômes de Laurent et la structure de leurs amibes

H. RULLGÅRD
C. R. Acad. Sci. Paris Sér. I Math 331 • 2000
View 1 Excerpt

Amoebas and Laurent series

M. FORSBERG
doctoral thesis, Kungliga Tekniska Högskolan, Stockholm • 1998
View 1 Excerpt

Notions of Convexity

L. HÖRMANDER
Progr. Math. 127, Birkhäuser, Boston • 1994

The Dirichlet problem for the multidimensional Monge-Ampère equation

J. RAUCH, B. A. TAYLOR
Rocky Mountain J. Math. 7 • 1977
View 1 Excerpt

Similar Papers

Loading similar papers…