Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I

Abstract

Glutaric aciduria type I (glutaryl-CoA dehydrogenase deficiency) is an inborn error of metabolism that usually manifests in infancy by an acute encephalopathic crisis and often results in permanent motor handicap. Biochemical hallmarks of this disease are elevated levels of glutarate and 3-hydroxyglutarate in blood and urine. The neuropathology of this disease is still poorly understood, as low lysine diet and carnitine supplementation do not always prevent brain damage, even in early-treated patients. We used a 3D in vitro model of rat organotypic brain cell cultures in aggregates to mimic glutaric aciduria type I by repeated administration of 1 mM glutarate or 3-hydroxyglutarate at two time points representing different developmental stages. Both metabolites were deleterious for the developing brain cells, with 3-hydroxyglutarate being the most toxic metabolite in our model. Astrocytes were the cells most strongly affected by metabolite exposure. In culture medium, we observed an up to 11-fold increase of ammonium in the culture medium with a concomitant decrease of glutamine. We further observed an increase in lactate and a concomitant decrease in glucose. Exposure to 3-hydroxyglutarate led to a significantly increased cell death rate. Thus, we propose a three step model for brain damage in glutaric aciduria type I: (i) 3-OHGA causes the death of astrocytes, (ii) deficiency of the astrocytic enzyme glutamine synthetase leads to intracerebral ammonium accumulation, and (iii) high ammonium triggers secondary death of other brain cells. These unexpected findings need to be further investigated and verified in vivo. They suggest that intracerebral ammonium accumulation might be an important target for the development of more effective treatment strategies to prevent brain damage in patients with glutaric aciduria type I.

DOI: 10.1371/journal.pone.0053735

Extracted Key Phrases

7 Figures and Tables

01002003002014201520162017
Citations per Year

211 Citations

Semantic Scholar estimates that this publication has 211 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@inproceedings{Jafari2013AmmoniumAA, title={Ammonium Accumulation and Cell Death in a Rat 3D Brain Cell Model of Glutaric Aciduria Type I}, author={Paris Jafari and Olivier Braissant and Petra Zavad{\'a}kov{\'a} and Hugues Henry and Luisa Bonafė and Diana Ballhausen}, booktitle={PloS one}, year={2013} }