Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View

Abstract

In this paper, we study the stability of discrete-time switched linear systems via symbolic topology formulation and the multiplicative ergodic theorem. A sufficient and necessary condition for μA-almost sure stability is derived, where μA is the Parry measure of the topological Markov chain with a prescribed transition (0,1)-matrix A. The obtained μA-almost sure stability is invariant under small perturbations of the system. The topological description of stable processes of switched linear systems in terms of Hausdorff dimension is given, and it is shown that our approach captures the maximal set of stable processes for linear switched systems. The obtained results cover the stochastic Markov jump linear systems, where the measure is the natural Markov measure defined by the transition probability matrix. Two examples are provided to illustrate the theoretical outcomes of the paper.

DOI: 10.1137/070699676

Cite this paper

@article{Dai2008AlmostSS, title={Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View}, author={Xiongping Dai and Yu Huang and Mingqing Xiao}, journal={SIAM J. Control and Optimization}, year={2008}, volume={47}, pages={2137-2156} }