Algorithmic approach to adiabatic quantum optimization
@article{Dickson2012AlgorithmicAT, title={Algorithmic approach to adiabatic quantum optimization}, author={N. Dickson and M. Amin}, journal={Physical Review A}, year={2012}, volume={85}, pages={032303} }
It is believed that the presence of anticrossings with exponentially small gaps between the lowest two energy levels of the system Hamiltonian, can render adiabatic quantum optimization inefficient. Here, we present a simple adiabatic quantum algorithm designed to eliminate exponentially small gaps caused by anticrossings between eigenstates that correspond with the local and global minima of the problem Hamiltonian. In each iteration of the algorithm, information is gathered about the local… Expand
27 Citations
The Quantum Adiabatic Algorithm applied to random optimization problems: the quantum spin glass perspective
- Physics, Computer Science
- ArXiv
- 2012
- 67
- PDF
Iterative classical superadiabatic algorithm for combinatorial optimization
- Computer Science, Physics
- 2019
- PDF
On the quantum adiabatic evolution with the most general system Hamiltonian
- Physics, Computer Science
- Quantum Inf. Process.
- 2019
- 3
Quantum annealing with anneal path control: application to 2-SAT problems with known energy landscapes
- Physics, Mathematics
- 2018
- 5
- PDF
References
SHOWING 1-10 OF 16 REFERENCES
Nature 473
- 194
- 2011
Phys
- Rev. A 83, 012309
- 2011
Phys
- Rev. Lett. 105 167204
- 2010
Phys
- Rev. B 82, 024511
- 2010
Phys
- Rev. Lett. 104, 020502
- 2010
Phys
- Rev. Lett. 100, 060503, (2008); M.H.S. Amin, C.J.S. Truncik, and D.V. Averin, Phys. Rev. A 80, 022303
- 2009
Phys
- Rev. A 80, 062326
- 2009
Phys
- Rev. A 73, 022329
- 2006
Phys
- Rev. A 71, 012331 (2005); Phys. Rev. Lett. 95, 250503
- 2005