Algorithmic approach to adiabatic quantum optimization

@article{Dickson2012AlgorithmicAT,
  title={Algorithmic approach to adiabatic quantum optimization},
  author={N. Dickson and M. Amin},
  journal={Physical Review A},
  year={2012},
  volume={85},
  pages={032303}
}
It is believed that the presence of anticrossings with exponentially small gaps between the lowest two energy levels of the system Hamiltonian, can render adiabatic quantum optimization inefficient. Here, we present a simple adiabatic quantum algorithm designed to eliminate exponentially small gaps caused by anticrossings between eigenstates that correspond with the local and global minima of the problem Hamiltonian. In each iteration of the algorithm, information is gathered about the local… Expand
27 Citations

Figures and Tables from this paper

Fluctuation guided search in quantum annealing.
  • 1
  • PDF
On the quantum adiabatic evolution with the most general system Hamiltonian
  • 3
Hamiltonian Sparsification and Gap-Simulation
  • 7
  • PDF
Advantages of Unfair Quantum Ground-State Sampling
  • 11
  • PDF
...
1
2
3
...

References

SHOWING 1-10 OF 16 REFERENCES
Proceedings of the National Academy of Sciences, USA
  • 5,326
  • PDF
Nature 473
  • 194
  • 2011
Phys
  • Rev. A 83, 012309
  • 2011
Phys
  • Rev. Lett. 105 167204
  • 2010
Phys
  • Rev. B 82, 024511
  • 2010
Phys
  • Rev. Lett. 104, 020502
  • 2010
Phys
  • Rev. Lett. 100, 060503, (2008); M.H.S. Amin, C.J.S. Truncik, and D.V. Averin, Phys. Rev. A 80, 022303
  • 2009
Phys
  • Rev. A 80, 062326
  • 2009
Phys
  • Rev. A 73, 022329
  • 2006
Phys
  • Rev. A 71, 012331 (2005); Phys. Rev. Lett. 95, 250503
  • 2005
...
1
2
...