Algorithm for Computing Bernstein-Sato Ideals Associated with a Polynomial Mapping

Abstract

Let n, p be two strictly positive integers, and let f1(x), . . . , fp(x) ∈ K[x] := K[x1, . . . , xn] be p polynomials of n variables with coefficients in a fieldK of characteristic zero. Denote by An = K[x1, . . . , xn]〈∂x1 , . . . , ∂xn〉 the Weyl algebra with n variables and let s1, . . . , sp be new variables. Denote by L = K[x][f−1 1 , . . . , f−1 p , s1… (More)
DOI: 10.1006/jsco.2001.0487

Topics

Cite this paper

@article{Bahloul2001AlgorithmFC, title={Algorithm for Computing Bernstein-Sato Ideals Associated with a Polynomial Mapping}, author={Rouchdi Bahloul}, journal={J. Symb. Comput.}, year={2001}, volume={32}, pages={643-662} }