Alexander Groups and Virtual Links

@inproceedings{Silver2001AlexanderGA,
  title={Alexander Groups and Virtual Links},
  author={Daniel S. Silver and Susan G. Williams},
  year={2001}
}
The extended Alexander group of an oriented virtual link l of d components is defined. From its abelianization a sequence of polynomial invariants ∆i(u1, . . . , ud, v), i = 0, 1, . . . , is obtained. When l is a classical link, ∆i reduces to the well-known ith Alexander polynomial of the link in the d variables u1v, . . . , udv; in particular, ∆0 vanishes. 
Highly Cited
This paper has 20 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 13 references

Abstract link diagrams and virtual knots

  • N. Kamada, S. Kamada
  • J. Knot Theory Ramifications 9
  • 2000
1 Excerpt

Mahler measure

  • D. S. Silver, S. G. Williams
  • links and homology growth, Toplogy 39
  • 2000
2 Excerpts

Mahler measure , links and homology growth

  • S. G. Williams
  • Toplogy
  • 2000

Virtual knot presentations of ribbon torus-knots

  • S. Satoh
  • J. Knot Theory Ramifications 9
  • 2000
2 Excerpts

An Introduction to Knot Theory

  • W.B.R. Lickorish
  • Springer-Verlag, New York
  • 1997

A Course in Group Theory

  • D. Robinson
  • Springer-Verlag, New York
  • 1996
1 Excerpt

Knots and Physics

  • L. H. Kauffman
  • World Scientific, Singapore
  • 1991

On Knots , Annals of Math

  • L. H. Kauffman
  • 1991

The Yang-Baxter equation and invariants of links

  • V. Turaev
  • Invent. Math. 92
  • 1988

Similar Papers

Loading similar papers…