Airway reopening pressure in isolated rat lungs.


In a previous modeling study, we predicted that the yield pressure for airway reopening (Pyield) should depend on airway fluid surface tension (gamma) and airway radius (R), according to the relationship Pyield = 8.3 gamma/R. To test this prediction, we studied tantalum bronchograms of isolated perfused rat lungs from three rats by using microfocal X-ray imaging. Thirty-two airways with diameters ranging from 300 to 2,400 microns were recorded as the airways were collapsed and reinflated. Airway pressure was reduced transiently to -40 cmH2O to produce airway closure. Airway pressure was then slowly increased from 0 to 25 cmH2O. In each airway, the observed diameter remained constant until a Pyield was reached; at this pressure, airways were seen to "pop" open, allowing clear identification of airway reopening pressure. When Pyield was plotted against diameter at maximum inflation, the experimental data were in approximate agreement with predictions of Pyield made assuming a gamma of 35 dyn/cm. The close correspondence of the measured values with these predictions suggests that surfactant is present in these airways and facilitates airway reopening.


Citations per Year

108 Citations

Semantic Scholar estimates that this publication has 108 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Naureckas1994AirwayRP, title={Airway reopening pressure in isolated rat lungs.}, author={Edward Ted Naureckas and Christopher A. Dawson and Ben S. Gerber and Donald P. Gaver and Howard L Gerber and John H. Linehan and Julian Solway and R W Samsel}, journal={Journal of applied physiology}, year={1994}, volume={76 3}, pages={1372-7} }