Affine crystal structure on rigged configurations of type $D_{n}^{(1)}$
@article{Okado2011AffineCS, title={Affine crystal structure on rigged configurations of type \$D\_\{n\}^\{(1)\}\$}, author={Masato Okado and Reiho Sakamoto and Anne Schilling}, journal={Journal of Algebraic Combinatorics}, year={2011}, volume={37}, pages={571-599} }
Extending the work in Schilling (Int. Math. Res. Not. 2006:97376, 2006), we introduce the affine crystal action on rigged configurations which is isomorphic to the Kirillov–Reshetikhin crystal Br,s of type $D_{n}^{(1)}$ for any r,s. We also introduce a representation of Br,s (r≠n−1,n) in terms of tableaux of rectangular shape r×s, which we coin Kirillov–Reshetikhin tableaux (using a nontrivial analogue of the type A column splitting procedure) to construct a bijection between elements of a…
20 Citations
Rigged configurations of type $D_4^{(3)}$ and the filling map
- Mathematics
- 2015
We give a statistic preserving bijection from rigged configurations to a tensor product of Kirillov–Reshetikhin crystals $\otimes_{i=1}^{N}B^{1,s_i}$ in type $D_4^{(3)}$ by using virtualization into…
Crystal Structure on Rigged Configurations and the Filling Map
- MathematicsElectron. J. Comb.
- 2015
Under the bijection between rigged configurations and tensor products of Kirillov-Reshetikhin crystals specialized to a single tensor factor, a new tableaux model is obtained for Kirillovo-Reshevikin crystals.
Type $${{\varvec{D}}}_{{\varvec{n}}}^\mathbf{(1)}$$Dn(1) rigged configuration bijection
- Mathematics
- 2017
We establish a bijection between the set of rigged configurations and the set of tensor products of Kirillov–Reshetikhin crystals of type $$D^{(1)}_n$$Dn(1) in full generality. We prove the…
An Explicit Algorithm of Rigged Configuration Bijection for the Adjoint Crystal of Type $G_{2}^{(1)}$
- Mathematics
- 2021
We construct an explicit algorithm of the static-preserving bijection between the rigged configurations and the highest weight paths of the form (B2,1)⊗L in the G (1) 2 adjoint crystals.
Uniform description of the rigged configuration bijection
- MathematicsSelecta Mathematica
- 2020
We give a uniform description of the bijection $$\Phi $$ Φ from rigged configurations to tensor products of Kirillov–Reshetikhin crystals of the form $$\bigotimes _{i=1}^N B^{r_i,1}$$ ⨂ i = 1 N B r i…
On higher level Kirillov–Reshetikhin crystals, Demazure crystals, and related uniform models
- MathematicsJournal of Algebra
- 2019
Rigged Configurations and Kashiwara Operators
- Mathematics
- 2014
For types A (1) and D (1) n we prove that the rigged configuration bijection in- tertwines the classical Kashiwara operators on tensor products of the arbitrary Kirillov{ Reshetikhin crystals and the…
Connecting Marginally Large Tableaux and Rigged Configurations via Crystals
- Mathematics
- 2015
We show that the bijection from rigged configurations to tensor products of Kirillov-Reshetikhin crystals extends to a crystal isomorphism between the B(∞)$B(\infty )$ models given by rigged…
Tableau models for semi-infinite Bruhat order and level-zero representations of quantum affine algebras.
- Mathematics
- 2021
We prove that semi-infinite Bruhat order on an affine Weyl group is completely determined from those on the quotients by affine Weyl subgroups associated with various maximal (standard) parabolic…
References
SHOWING 1-10 OF 39 REFERENCES
A CRYSTAL TO RIGGED CONFIGURATION BIJECTION FOR NONEXCEPTIONAL AFFINE ALGEBRAS
- Mathematics
- 2002
Author(s): Okado, Masato; Schilling, Anne; Shimozono, Mark | Abstract: Kerov, Kirillov, and Reshetikhin defined a bijection between highest weight vectors in the crystal graph of a tensor power of…
Combinatorial R-matrices for Kirillov--Reshetikhin crystals of type D^{(1)}_n, B^{(1)}_n, A^{(2)}_{2n-1}
- Mathematics
- 2009
We calculate the image of the combinatorial R-matrix for any classical highest weight element in the tensor product of Kirillov--Reshetikhin crystals $B^{r,k}\otimes B^{1,l}$ of type $D^{(1)}_n,…
Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection II. Proof for
$\mathfrak{sl}_{n}$
case
- Mathematics
- 2008
Abstract
In proving the Fermionic formulae, a combinatorial bijection called the Kerov–Kirillov–Reshetikhin (KKR) bijection plays the central role. It is a bijection between the set of highest paths…
A bijection between Littlewood-Richardson tableaux and rigged configurations
- Mathematics
- 1999
Abstract. We define a bijection from Littlewood-Richardson tableaux to rigged configurations and show that it preserves the appropriate statistics. This proves in particular a quasi-particle…
KKR type bijection for the exceptional affine algebra E_6^{(1)}
- Mathematics
- 2011
For the exceptional affine type E_6^{(1)} we establish a statistic-preserving bijection between the highest weight paths consisting of the simplest Kirillov-Reshetikhin crystal and the rigged…
GENERALIZED ENERGIES AND INTEGRABLE $D^{(1)}_{n}$ CELLULAR UTOMATON
- Mathematics
- 2010
We introduce generalized energies for a class of U_q(D^{(1)}_n) crystals by using the piecewise linear functions that are building blocks of the combinatorial R. They include the conventional energy…
Demazure Crystals, Kirillov-Reshetikhin Crystals, and the Energy Function
- MathematicsElectron. J. Comb.
- 2012
A formula of the Demazure character is obtained in terms of the energy function, which has applications to Macdonald polynomials and q-deformed Whittaker functions.