# Adjacency matrices of random digraphs: singularity and anti-concentration

@article{Litvak2015AdjacencyMO, title={Adjacency matrices of random digraphs: singularity and anti-concentration}, author={Alexander E. Litvak and Anna Lytova and Konstantin E. Tikhomirov and Nicole Tomczak-Jaegermann and Pierre Youssef}, journal={arXiv: Probability}, year={2015} }

Let ${\mathcal D}_{n,d}$ be the set of all $d$-regular directed graphs on $n$ vertices. Let $G$ be a graph chosen uniformly at random from ${\mathcal D}_{n,d}$ and $M$ be its adjacency matrix. We show that $M$ is invertible with probability at least $1-C\ln^{3} d/\sqrt{d}$ for $C\leq d\leq cn/\ln^2 n$, where $c, C$ are positive absolute constants. To this end, we establish a few properties of $d$-regular directed graphs. One of them, a Littlewood-Offord type anti-concentration property, is of…

## 37 Citations

Invertibility of adjacency matrices for random d-regular directed graphs

- Mathematics
- 2018

Let $d\geq 3$ be a fixed integer, and a prime number $p$ such that $\gcd(p,d)=1$. Let $A$ be the adjacency matrix of a random $d$-regular directed graph on $n$ vertices. We show that as a random…

Invertibility of adjacency matrices for random d-regular graphs

- MathematicsDuke Mathematical Journal
- 2021

Let $d\geq 3$ be a fixed integer and $A$ be the adjacency matrix of a random $d$-regular directed or undirected graph on $n$ vertices. We show there exist constants $\mathfrak d>0$, \begin{align*}…

Structure of eigenvectors of random regular digraphs

- MathematicsTransactions of the American Mathematical Society
- 2019

Let $n$ be a large integer, let $d$ satisfy $C\leq d\leq \exp(c\sqrt{\ln n})$ for some universal constants $c, C>0$, and let $z\in {\mathcal C}$. Further, denote by $M$ the adjacency matrix of a…

The smallest singular value of dense random regular digraphs

- Mathematics
- 2020

Let $A$ be the adjacency matrix of a uniformly random $d$-regular digraph on $n$ vertices, and suppose that $\min(d,n-d)\geq\lambda n$. We show that for any $\kappa \geq 0$,…

The circular law for random regular digraphs with random edge weights

- Mathematics
- 2015

We consider random $n\times n$ matrices of the form $Y_n=\frac1{\sqrt{d}}A_n\circ X_n$, where $A_n$ is the adjacency matrix of a uniform random $d$-regular directed graph on $n$ vertices, with…

Circular law for sparse random regular digraphs

- Mathematics
- 2018

Fix a constant $C\geq 1$ and let $d=d(n)$ satisfy $d\leq \ln^{C} n$ for every large integer $n$. Denote by $A_n$ the adjacency matrix of a uniform random directed $d$-regular graph on $n$ vertices.…

The smallest singular value of a shifted d-regular random square matrix

- MathematicsProbability Theory and Related Fields
- 2018

We derive a lower bound on the smallest singular value of a random d-regular matrix, that is, the adjacency matrix of a random d-regular directed graph. Specifically, let $$C_1<d< c n/\log ^2…

On the second eigenvalue of random bipartite biregular graphs

- Mathematics
- 2020

We consider the spectral gap of a uniformly chosen random $(d_1,d_2)$-biregular bipartite graph $G$ with $|V_1|=n, |V_2|=m$, where $d_1,d_2$ could possibly grow with $n$ and $m$. Let $A$ be the…

The spectral gap of dense random regular graphs

- MathematicsThe Annals of Probability
- 2019

For any $\alpha\in (0,1)$ and any $n^{\alpha}\leq d\leq n/2$, we show that $\lambda(G)\leq C_\alpha \sqrt{d}$ with probability at least $1-\frac{1}{n}$, where $G$ is the uniform random $d$-regular…

Sharp transition of the invertibility of the adjacency matrices of sparse random graphs

- Mathematics
- 2018

We consider three different models of sparse random graphs:~undirected and directed Erdős-Renyi graphs, and random bipartite graph with an equal number of left and right vertices. For such graphs we…

## References

SHOWING 1-10 OF 40 REFERENCES

On the singularity of adjacency matrices for random regular digraphs

- Mathematics
- 2014

We prove that the (non-symmetric) adjacency matrix of a uniform random d-regular directed graph on n vertices is asymptotically almost surely invertible, assuming $$\min (d,n-d)\ge C\log…

Lower Bounds for the Isoperimetric Numbers of Random Regular Graphs

- Mathematics, Computer ScienceSIAM J. Discret. Math.
- 2014

Asymptotically almost sure lower bounds for the vertex isoperimetric number for all are given and a lower bound on the asymptotics as $d\to\infty$ is obtained.

Anti-concentration property for random digraphs and invertibility of their adjacency matrices

- Mathematics
- 2016

Let Dn,d be the set of all directed d-regular graphs on n vertices. Let G be a graph chosen uniformly at random from Dn,d and M be its adjacency matrix. We show that M is invertible with probability…

On the singularity probability of random Bernoulli matrices

- Mathematics
- 2005

Let $n$ be a large integer and $M_n$ be a random $n$ by $n$ matrix whose entries are i.i.d. Bernoulli random variables (each entry is $\pm 1$ with probability 1/2). We show that the probability that…

Random symmetric matrices are almost surely nonsingular

- Mathematics
- 2005

Let $Q_n$ denote a random symmetric $n$ by $n$ matrix, whose upper diagonal entries are i.i.d. Bernoulli random variables (which take values 0 and 1 with probability 1/2). We prove that $Q_n$ is…

From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices

- Mathematics
- 2008

The famous \emph{circular law} asserts that if $M_n$ is an $n \times n$ matrix with iid complex entries of mean zero and unit variance, then the empirical spectral distribution (ESD) of the…

Local semicircle law for random regular graphs

- Mathematics, Physics
- 2015

We consider random $d$-regular graphs on $N$ vertices, with degree $d$ at least $(\log N)^4$. We prove that the Green's function of the adjacency matrix and the Stieltjes transform of its empirical…

Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices

- Mathematics
- 2011

Let $M_n$ denote a random symmetric $n$ by $n$ matrix, whose upper diagonal entries are iid Bernoulli random variables (which take value -1 and 1 with probability 1/2). Improving the earlier result…

A proof of Alon's second eigenvalue conjecture and related problems

- Mathematics, Computer ScienceArXiv
- 2004

These theorems resolve the conjecture of Alon, that says that for any > 0a ndd, the second largest eigenvalue of \ most" random dregular graphs are at most 2 p d 1+ (Alon did not specify precisely what \most" should mean or what model of random graph one should take).

On the probability of independent sets in random graphs

- Mathematics, Computer ScienceRandom Struct. Algorithms
- 2003

It is proved that if the edge probability p(n) satisfies p( n) ≥ n-2/5ln6/5n then the probability that G(n, p) does not contain an independent set of size k - c, for some absolute constant c > 0, is at most exp{-cn2/(k4p}.