# Adjacencies in Permutations

@article{Chitturi2016AdjacenciesIP, title={Adjacencies in Permutations}, author={Bhadrachalam Chitturi and S KrishnaveniK.}, journal={ArXiv}, year={2016}, volume={abs/1601.04469} }

A permutation on an alphabet $ \Sigma $, is a sequence where every element in $ \Sigma $ occurs precisely once. Given a permutation $ \pi $= ($\pi_{1} $, $ \pi_{2} $, $ \pi_{3} $,....., $ \pi_{n} $) over the alphabet $ \Sigma $ =$\{ $0, 1, . . . , n$-$1 $\}$ the elements in two consecutive positions in $ \pi $ e.g. $ \pi_{i} $ and $ \pi_{i+1} $ are said to form an \emph{adjacency} if $ \pi_{i+1} $ =$ \pi_{i} $+1. The concept of adjacencies is widely used in computation. The set of permutations… Expand

#### Topics from this paper

#### 5 Citations

Analysis of Algorithm $\delta^{\ast}$ on full binary trees

- Mathematics
- 2019 Second International Conference on Advanced Computational and Communication Paradigms (ICACCP)
- 2019

The set of permutations with <tex>$n$</tex> symbols is a symmetric group represented by <tex>$S_{n}$</tex>. A transposition tree, <tex>$T=(V_{T}, E_{T})$</tex>, is a spanning tree over its… Expand

Sorting permutations with a transposition tree

- Computer Science, Mathematics
- 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)
- 2019

Jerrum showed that, in general, it is intractable to compute the diameter if the number of generators is at least two and computing a tighter upper bounds is of both theoretical ad practical interest. Expand

Sorting permutations with transpositions in O(n3) amortized time

- Mathematics, Computer Science
- Theor. Comput. Sci.
- 2019

An algorithm is designed to compute d t ( π ) ∀π in Sn and compute diam( Γ ( S n ) ) with transpositions in O ( n ! n 3 ) time and O (n ! n 2 ) space; at an amortized time of O (N 3 ) . Expand

Expected genomic dissimilarity

- Mathematics
- 2019 8th International Conference on Modeling Simulation and Applied Optimization (ICMSAO)
- 2019

Permutation, a discrete structure, is a sequence over the corresponding alphabet Σ where every element of Σ occurs exactly once. The set of permutations over Σ forms a symmetric group denoted by Sn.… Expand

Bounding the diameter of cayley graphs generated by specific transposition trees

- Mathematics, Computer Science
- 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI)
- 2017

This article compares various methods for determining an upper bound on the diameter value of a Cayley graph and exact diameters for novel classes of trees are identified. Expand

#### References

SHOWING 1-10 OF 30 REFERENCES

Tighter upper bound for sorting permutations with prefix transpositions

- Mathematics, Computer Science
- Theor. Comput. Sci.
- 2015

Permutations are sequences where each symbol in the given alphabet Σ appears exactly once. A transposition is an operation that exchanges two adjacent sublists in a permutation; if one of these… Expand

Lower Bounding Edit Distances between Permutations

- Computer Science, Mathematics
- SIAM J. Discret. Math.
- 2013

This paper presents an algebraic reinterpretation of the cycle graph of a permutation $pi$ as an even permutation $\overline{\pi}$ and shows how to reformulate the authors' sorting problems in terms of particular factorizations of the latter permutation. Expand

On transforming sequences

- Mathematics
- 2007

Sequences are well defined mathematical objects which include strings, permutations, and vectors. In this thesis, a “sequence” refers to an object which is either a string over a finite alphabet or a… Expand

Bounding Prefix Transposition Distance for Strings and Permutations

- Computer Science, Mathematics
- Proceedings of the 41st Annual Hawaii International Conference on System Sciences (HICSS 2008)
- 2008

It is proved that the exact prefix transposition distance problem on strings is NP complete and upper and lower bounds for the prefix transpositions distance on strings are given. Expand

Sorting a bridge hand

- Computer Science, Mathematics
- Discret. Math.
- 2001

A complete answer to the optimal sorting problem of a permutation of length n in at most 3n/4 moves is given, namely [(n + 1)/2]. Expand

Upper Bounds for Sorting Permutations with a Transposition Tree

- Mathematics, Computer Science
- Discret. Math. Algorithms Appl.
- 2013

For a class of trees, it is proved that the new upper bounds are tighter than β and f(Γ), on average and in most of the cases. Expand

Adjacent Swaps on Strings

- Mathematics, Computer Science
- COCOON
- 2008

An algorithm with O(nk) time is given for both signed and unsigned versions of this problem where kis the number of symbols, which is the minimum number of adjacent swaps needed to transform one string of size ninto another compatible string over an alphabet k, i.e.adjacent swap distance problem. Expand

Sorting by Prefix Transpositions

- Mathematics, Computer Science
- SPIRE
- 2002

A transposition is an operation that exchanges two consecutive, adjacent blocks in a permutation. A prefix transposition is a transposition that moves the first element in the permutation. In this… Expand

Sorting by Transpositions Is Difficult

- Computer Science, Mathematics
- SIAM J. Discret. Math.
- 2012

The transposition distance between two genomes, that is, the minimum number of transpositions needed to transform a genome into another, is a relevant evolutionary distance, and it is proved that the Sorting by Transpositions problem is solved. Expand

Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey

- Mathematics, Computer Science
- Parallel Comput.
- 1993

A comprehensive and unified analysis of symmetry in a wide variety of Cayley graphs of permutation groups, including the star graph, bubble-sort graph, modified bubble- sort graph, complete-transposition graph, prefix-reversal graph, alternating-group graph, binary and base-b (b ≥ 3) hypercube, cube connected cycles, bisectional graph, folded hypercube and binary orthogonal graph is provided. Expand