Adaptive Solution of Partial Differential Equations in Multiwavelet Bases

@inproceedings{Beylkin1999AdaptiveSO,
  title={Adaptive Solution of Partial Differential Equations in Multiwavelet Bases},
  author={Gregory Beylkin and D J Gines and Lev Vozovoi},
  year={1999}
}
Adaptive Solution of Partial Differential Equations in Multiwavelet Bases B. Alpert,∗,1 G. Beylkin,†,2 D. Gines,† and L. Vozovoi‡,3,4,5 ∗National Institute of Standards and Technology, Boulder, Colorado 80305-3328; †Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309-0526; and ‡School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel E-mail: alpert@boulder.nist.gov, beykin@boulder.colorado.edu, david.gines@agilent.com, and vozovoi@bfr.co.il 
Highly Influential
This paper has highly influenced 12 other papers. REVIEW HIGHLY INFLUENTIAL CITATIONS
45 Citations
18 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-10 of 45 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 18 references

Performance of a Spectral Element Atmospheric Model (Seam) on the HP Exemplar spp2000

  • J. Tribbia, M. Taylor, R. Loft
  • Technical report (Sci. Comput. Div., Nat. Cent…
  • 1997
1 Excerpt

Tribbia, The spectral element method for the shallow water equations on the sphere

  • M. Iskandarani, M. Taylor
  • J. Comput. Phys. 130,
  • 1997
1 Excerpt

Wavelets on the interval and fast wavelet transforms

  • A. Cohen, I. Daubechies, P. Vial
  • Appl. Comput. Harmonic Analy. 1(1),
  • 1993
1 Excerpt

Similar Papers

Loading similar papers…