Adapting Visual Category Models to New Domains

Abstract

Domain adaptation is an important emerging topic in computer vision. In this paper, we present one of the first studies of domain shift in the context of object recognition. We introduce a method that adapts object models acquired in a particular visual domain to new imaging conditions by learning a transformation that minimizes the effect of domain-induced changes in the feature distribution. The transformation is learned in a supervised manner and can be applied to categories for which there are no labeled examples in the new domain. While we focus our evaluation on object recognition tasks, the transform-based adaptation technique we develop is general and could be applied to non-image data. Another contribution is a new multi-domain object database, freely available for download. We experimentally demonstrate the ability of our method to improve recognition on categories with few or no target domain labels and moderate to large changes in the imaging conditions.

DOI: 10.1007/978-3-642-15561-1_16

Extracted Key Phrases

Showing 1-10 of 365 extracted citations
05010015020102011201220132014201520162017
Citations per Year

651 Citations

Semantic Scholar estimates that this publication has received between 543 and 782 citations based on the available data.

See our FAQ for additional information.