Adapted Algebras for the Berenstein-zelevinsky Conjecture

@inproceedings{CALDERO2001AdaptedAF,
  title={Adapted Algebras for the Berenstein-zelevinsky Conjecture},
  author={Philippe CALDERO},
  year={2001}
}
  • Philippe CALDERO
  • Published 2001
Let G be a simply connected semi-simple complex Lie group and fix a maximal unipotent subgroup U of G. Let q be an indeterminate and let’s denote by B the dual canonical basis, [18], of the quantized algebra Cq[U ] of regular functions on U. Following [19], fix a Z≥0-parametrization of this basis, where N =dimU . In [2], A. Berenstein and A. Zelevinsky conjecture that two elements of B q-commute if and only if they are multiplicative, i.e. their product is an element of B up to a power of q… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 21 references

Canonical bases arising from quantized enveloping algebras

  • G. LUSZTIG
  • II, Prog. Theor. Phys. Suppl.,
  • 1990
Highly Influential
9 Excerpts

Multiplicative Properties of Dual Canonical Bases of Quantum Groups

  • M. REINEKE
  • J. Alg.,
  • 1999
Highly Influential
3 Excerpts

On the Gelfand-Kirillov conjecture for quantum algebras

  • P. CALDERO
  • Proc. Amer. Math. Soc.,
  • 2000
1 Excerpt

Induced representations of affine Hecke algebras and canonical bases of quantum groups

  • J-Y THIBON.
  • Amer . Math . Soc . Transl . Ser .
  • 1998

On the q-commutations in Uq(n) at roots of one

  • P. CALDERO
  • J. Algebra,
  • 1998
1 Excerpt

Quasicommuting families of quantum Plcker coordinates, Kirillov’s seminar on representation theory, 85–108

  • B. LECLERC, A. ZELEVINSKY
  • Amer. Math. Soc. Transl. Ser
  • 1998

On the coloured graph structure of Lusztig’s canonical basis

  • M. REINEKE
  • Math. Ann.,
  • 1997

LITTELMANN, A plactic algebra for semisimple Lie algebras

  • Adv. Math
  • 1996

Similar Papers

Loading similar papers…