Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex.


The cerebral cortex receives an extensive serotonergic (5-hydroxytryptamine, 5-HT) input. Immunohistochemical studies suggest that inhibitory neurons are the main target of 5-HT innervation. In vivo extracellular recordings have shown that 5-HT generally inhibited cortical pyramidal neurons, whereas in vitro studies have shown an excitatory action. To determine the cellular mechanisms underlying the diverse actions of 5-HT in the cortex, we examined its effects on cortical inhibitory interneurons and pyramidal neurons. We found that 5-HT, through activation of 5-HT(2A) receptors, induced a massive enhancement of spontaneous inhibitory postsynaptic currents (sIPSCs) in pyramidal neurons, lasting for approximately 6 min. In interneurons, this 5-HT-induced enhancement of sIPSCs was much weaker. Activation of 5-HT(2A) receptors also increased spontaneous excitatory postsynaptic currents (sEPSCs) in pyramidal neurons. This response desensitized less and at a slower rate. In contrast, 5-HT slightly decreased evoked IPSCs (eIPSCs) and eEPSCs. In addition, 5-HT via 5-HT(3) receptors evoked a large and rapidly desensitizing inward current in a subset of interneurons and induced a transient enhancement of sIPSCs. Our results suggest that 5-HT has widespread effects on both interneurons and pyramidal neurons and that a short pulse of 5-HT is likely to induce inhibition whereas the prolonged presence of 5-HT may result in excitation.

Extracted Key Phrases

11 Figures and Tables

Citations per Year

1,967 Citations

Semantic Scholar estimates that this publication has 1,967 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Zhou1999ActivationOS, title={Activation of serotonin receptors modulates synaptic transmission in rat cerebral cortex.}, author={F M Zhou and John J Hablitz}, journal={Journal of neurophysiology}, year={1999}, volume={82 6}, pages={2989-99} }