Corpus ID: 220546326

Accurately constraining velocity information from spectral imaging observations using machine learning techniques

@inproceedings{MacBride2020AccuratelyCV,
  title={Accurately constraining velocity information from spectral imaging observations using machine learning techniques},
  author={C. D. MacBride and D. Jess and S. Grant and E. Khomenko and P. Keys and M. Stangalini},
  year={2020}
}
  • C. D. MacBride, D. Jess, +3 authors M. Stangalini
  • Published 2020
  • Physics
  • 1Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN, UK 2Department of Physics and Astronomy, California State University Northridge, Northridge, CA 91330, U.S.A. 3Instituto de Astrofísica de Canarias, 38205 La Laguna, Tenerife, Spain 4Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5Italian Space Agency (ASI), Via del Politecnico snc, 00133 Roma, Italy 

    Figures from this paper.

    Spectropolarimetric Fluctuations in a Sunspot Chromosphere

    References

    Publications referenced by this paper.
    SHOWING 1-10 OF 80 REFERENCES
    Machine learning for transient discovery in Pan-STARRS1 difference imaging
    • 32
    • PDF
    DeepVel: deep learning for the estimation of horizontal velocities at the solar surface
    • 21
    • PDF
    IBIS: A New Post-Focus Instrument for Solar Imaging Spectroscopy
    • 180
    • PDF
    Rotation-invariant convolutional neural networks for galaxy morphology prediction
    • 342
    • PDF