Corpus ID: 124810485

AN IMPROVED PROOF OF NUMATA AND SHIBATAS THEOREMS ON FINSLER SPACES OF SCALAR CURVATURE

@inproceedings{Matsumoto2004ANIP,
  title={AN IMPROVED PROOF OF NUMATA AND SHIBATAS THEOREMS ON FINSLER SPACES OF SCALAR CURVATURE},
  author={M. Matsumoto},
  year={2004}
}
Let F, n ≥ 3, be a Finsler space of non-zero scalar curvature K. S. Numata proved in 1975 a theorem: If F is a Landsberg space, then it is a Riemannian space of constant curvature K. C. Shibata extended this theorem in 1978 under the condition that F has vanishing stretch curvature. But the notion of the stretch curvature given by L. Berwald in 1925 has little relation to metrical connections, and has been hidden from sight. We first clarifies the notion of this curvature, and then give a brief… Expand
8 Citations
On Some Properties of Finsler Manifolds of Stretch Curvature
  • PDF
A rigidity result on Finsler surfaces
  • PDF
Weakly stretch Finsler metrics
  • 6
  • Highly Influenced
Finsler Metrics with Relatively Isotropic Stretch Curvature
  • PDF
Generalized P-reducible Finsler metrics
  • 3
  • Highly Influenced
  • PDF
Douglas-Square Metrics with Vanishing Mean Stretch Curvature

References

SHOWING 1-10 OF 10 REFERENCES
On the curvature tensor R hijk of Finsler spaces of scalar curvature
  • Tensor, N. S
  • 1978
On the curvature tensor Rhijk of Finsler spaces of scalar curvature, Tensor
  • N. S
  • 1978
On Landsberg spaces of scalar curvature
  • J. Korean Math. Soc
  • 1975
On C-reducible Finsler spaces
  • Tensor, N. S
  • 1972
On C-reducible Finsler spaces, Tensor
  • N. S
  • 1972
Über Parallelübertraung in Räumen mit allgemeiner Maßbestimmung
  • Jahresber. der Deutschen Math.-Ver
  • 1925
On the stretch curvature of a Finsler space and certain open problem
  • J. Nat. Acad. Math