ALGEBRAIC PROOF IV FERMAT’S LAST THEOREM

@article{Joseph2015ALGEBRAICPI,
  title={ALGEBRAIC PROOF IV FERMAT’S LAST THEOREM},
  author={J. E. Joseph},
  journal={Journal of Advances in Mathematics},
  year={2015},
  volume={11},
  pages={5458-5461}
}
  • J. E. Joseph
  • Published 2015
  • Mathematics
  • Journal of Advances in Mathematics
The special case 4 4 4 z = x  y is impossible [1]. In view of this fact, it is only necessary to prove, ifx, y, z, are relatively prime positive integers,  is an odd prime,    z = x  y (In this article, the symbol  will represent an odd prime). Also, a new proof is given that 4 4 4 z = x  y is impossible. 

References

SHOWING 1-4 OF 4 REFERENCES
Ring-Theoretic Properties of Certain Hecke Algebras
  • 951
  • PDF
Modular ellipic eurves and Fermat’s Last Theorem
  • Ann. Math
  • 1995
Fermat’s Last Theorem:A Genetic Introduction to Algebraic Number Theory, Springer-Verlag
  • New York,
  • 1977