ABC INEQUALITIES FOR SOME MODULI SPACES OF LOG-GENERAL TYPE

@article{Kim1998ABCIF,
  title={ABC INEQUALITIES FOR SOME MODULI SPACES OF LOG-GENERAL TYPE},
  author={M. Kim},
  journal={Mathematical Research Letters},
  year={1998},
  volume={5},
  pages={517-522}
}
  • M. Kim
  • Published 1998
  • Mathematics
  • Mathematical Research Letters
Let B be a smooth projective curve of genus γ over the complex numbers and let f : A→B be a non-isotrivial semi-abelian scheme over B with projective generic fiber of relative dimension g. Let U ⊂ B be the locus above which the fibers are projective, and let S = B −U (a finite set). Thus f : AU →U is abelian, and f : A→B is the connected component of its Neron model. Denote by g0 the dimension of the fixed part of A and s = |S|. We will adopt the convention of using the same notation for the… Expand
5 Citations
On Szpiro's Discriminant Conjecture
  • 3
  • PDF
On Szpiro's Discriminant Conjecture
  • 7
  • PDF
A note on Szpiro's inequality for curves of higher genus
  • 2
  • PDF

References

SHOWING 1-10 OF 19 REFERENCES
Degeneration of Abelian varieties
  • 681
Discriminant et conducteur des courbes elliptiques
  • 34
  • PDF
Théorie de Hodge, II
  • 1,155
  • PDF
Pinceaux de variétés abélian
  • Astérisque 129, Société Mathématique de France,
  • 1985
Buium The ABC theorem for abelian varieties
  • Inter. Math. Res. Not
  • 1994
The a b c theorem for abelian varieties
  • 19
Faltings Degeneration of abelian varieties
  • Faltings Degeneration of abelian varieties
  • 1990
L. Szpiro Discriminant et conducteur des courbes elliptiques Séminaire sur les pinceaux de courbes elliptiques
  • L. Szpiro Discriminant et conducteur des courbes elliptiques Séminaire sur les pinceaux de courbes elliptiques
  • 1990
Moret-Bailly Pinceaux de variétés abélian , Astérisque 129
  • Moret-Bailly Pinceaux de variétés abélian , Astérisque 129
  • 1985
...
1
2
...