A windowed graph Fourier transform

Abstract

The prevalence of signals on weighted graphs is increasing; however, because of the irregular structure of weighted graphs, classical signal processing techniques cannot be directly applied to signals on graphs. In this paper, we define generalized translation and modulation operators for signals on graphs, and use these operators to adapt the classical windowed Fourier transform to the graph setting, enabling vertex-frequency analysis. When we apply this transform to a signal with frequency components that vary along a path graph, the resulting spectrogram matches our intuition from classical discrete-time signal processing. Yet, our construction is fully generalized and can be applied to analyze signals on any undirected, connected, weighted graph.

DOI: 10.1109/SSP.2012.6319640
View Slides

Extracted Key Phrases

6 Figures and Tables

01020201520162017
Citations per Year

Citation Velocity: 12

Averaging 12 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Shuman2012AWG, title={A windowed graph Fourier transform}, author={David I. Shuman and Benjamin Ricaud and Pierre Vandergheynst}, journal={2012 IEEE Statistical Signal Processing Workshop (SSP)}, year={2012}, pages={133-136} }