# A weighted l1-minimization approach for sparse polynomial chaos expansions

@article{Peng2014AWL, title={A weighted l1-minimization approach for sparse polynomial chaos expansions}, author={Ji-Gen Peng and Jerrad Hampton and Alireza Doostan}, journal={J. Comput. Phys.}, year={2014}, volume={267}, pages={92-111} }

## Figures from this paper

## 161 Citations

A Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions

- Computer ScienceSIAM J. Sci. Comput.
- 2017

An algorithm for recovering sparse orthogonal polynomial expansions via collocation that solves a preconditioned $\ell^1$-minimization problem and presents theoretical analysis and numerical results that show the method is superior to standard Monte Carlo methods in many situations of interest.

A gradient enhanced ℓ1-minimization for sparse approximation of polynomial chaos expansions

- Computer ScienceJ. Comput. Phys.
- 2018

A GENERAL FRAMEWORK FOR ENHANCING SPARSITY OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS

- Computer ScienceInternational Journal for Uncertainty Quantification
- 2019

This paper uses alternating direction method to identify new sets of random variables through iterative rotations such that the new representation of the uncertainty is sparser, which increases both the efficiency and accuracy of the compressive sensing-based uncertainty quantification method.

Compressive sensing adaptation for polynomial chaos expansions

- Computer ScienceJ. Comput. Phys.
- 2019

Enhancing ℓ1-minimization estimates of polynomial chaos expansions using basis selection

- Computer ScienceJ. Comput. Phys.
- 2015

Adaptive weighted least-squares polynomial chaos expansion with basis adaptivity and sequential adaptive sampling

- Computer Science
- 2020

Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies

- Computer Science, MathematicsJ. Comput. Phys.
- 2015

Divide and conquer: An incremental sparsity promoting compressive sampling approach for polynomial chaos expansions

- Computer Science
- 2017

Reduced-dimensionality Legendre Chaos expansions via basis adaptation on 1d active subspaces

- Computer Science
- 2016

The recently introduced basis adaptation method for Homogeneous (Wiener) Chaos expansions is explored in a new context where the rotation/projection matrices are computed by discovering the active…

A general framework of rotational sparse approximation in uncertainty quantification

- Computer Science
- 2021

This paper proposes a general framework to estimate coefficients of generalized polynomial chaos used in uncertainty quantification via rotational sparse approximation and examines several popular nonconvex regularizations in compressive sensing (CS) that perform better than the classic l1 approach empirically.

## References

SHOWING 1-10 OF 72 REFERENCES

Reweighted ℓ1ℓ1 minimization method for stochastic elliptic differential equations

- Mathematics, Computer ScienceJ. Comput. Phys.
- 2013

STOCHASTIC COLLOCATION ALGORITHMS USING 𝓁 1 -MINIMIZATION

- Computer Science
- 2012

The analysis suggests that using the Chebyshev measure to precondition the ‘1-minimization, which has been shown to be numerically advantageous in one dimension in the literature, may in fact become less efficient in high dimensions.

Adaptive sparse polynomial chaos expansion based on least angle regression

- Computer ScienceJ. Comput. Phys.
- 2011

A least-squares approximation of partial differential equations with high-dimensional random inputs

- Computer Science, MathematicsJ. Comput. Phys.
- 2009

An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis

- Computer Science
- 2010

ON THE OPTIMAL POLYNOMIAL APPROXIMATION OF STOCHASTIC PDES BY GALERKIN AND COLLOCATION METHODS

- Mathematics, Computer Science
- 2012

This work uses the Stochastic Collocation method, and the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that features better convergence properties compared to standard Smolyak or tensor product grids.

A non-adapted sparse approximation of PDEs with stochastic inputs

- Computer ScienceJ. Comput. Phys.
- 2011

An iterative thresholding algorithm for linear inverse problems with a sparsity constraint

- Mathematics, Computer Science
- 2003

It is proved that replacing the usual quadratic regularizing penalties by weighted 𝓁p‐penalized penalties on the coefficients of such expansions, with 1 ≤ p ≤ 2, still regularizes the problem.

Sparse Tensor Galerkin Discretization of Parametric and Random Parabolic PDEs - Analytic Regularity and Generalized Polynomial Chaos Approximation

- Mathematics, Computer ScienceSIAM J. Math. Anal.
- 2013

For initial boundary value problems of linear parabolic partial differential equations with random coefficients, analyticity of the solution with respect to the parameters is shown and regularity result of the parametric solution is proved for both compatible as well as incompatible initial data and source terms.