A variation of Hilbert’s axioms for euclidean geometry

  title={A variation of Hilbert’s axioms for euclidean geometry},
  author={Hermann H{\"a}hl and Hanna Peters},
  journal={Mathematische Semesterberichte},
  pages={253 - 258}
We propose a variation of Hilbert’s axioms for euclidean geometry which appears to us to be more intuitive, and which supports more directly Euclid’s original approach to the criteria for congruence of triangles. 



Geometry: Euclid and Beyond

1. Euclid's Geometry.- 2. Hilbert's Axioms.- 3. Geometry over Fields.- 4. Segment Arithmetic.- 5. Area.- 6. Construction Problems and Field Extensions.- 7. Non-Euclidean Geometry.- 8. Polyhedra.-

The Foundations of Geometry

  • E. L.
  • Philosophy
  • 1891
Abstract“OUGHT there not to be a perfect subjective geometry, as well as an applied objective one, the applicability of the former to the latter being a matter to be determined by induction from

Geometry and Empirical Science

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and

Einführung in die Geometrie

Absolute Geometrie im ersten Buch von Euklids Elementen auf der Grundlage einer Variation der Hilbertschen Axiome

  • Wissenschaftliche Arbeit zur Zulassung zur Wissenschaftlichen Prüfung für das Lehramt an Gymnasien
  • 2016

Grundlagen der Geometrie, 14th edn

  • 1999

Congruence axioms for absolute geometry

  • Chron
  • 1975

Die Grundlagen der Geometrie um die Wende des 19 . Jahrhunderts

  • Math Phys Semesterber
  • 1961

Ebene Geometrie. Axiomatische Begründung der euklidischen und nichteuklidischen Geometrie

  • 1976