A two-parameter quantization of osp(4/2)
@article{Zhang1992ATQ, title={A two-parameter quantization of osp(4/2)}, author={Rui-bin Zhang}, journal={Journal of Physics A}, year={1992}, volume={25} }
A two-parameter deformation of the universal algebra of osp(4/2) is carried out, yielding a Z2-graded Hopf algebra with a bijective antipode. This Hopf algebra depends on the extra parameter in both its algebraic and coalgebraic structures, and also admits nontrivial finite-dimensional irreps at arbitrary deformation parameters.
4 Citations
A two-parameter quantization of sl(2/1) and its finite-dimensional representations
- Mathematics
- 1994
The Lie superalgebra sl(2/1) is quantized in its non-standard simple rod system, resulting in a two-parameter quantum superalgebra Uq1,q2(sl(2/1)). When the two parameters coincide, Uq1,q2(sl(2/1))…
The Classical r-Matrix of AdS/CFT and its Lie Bialgebra Structure
- Mathematics
- 2009
In this paper we investigate the algebraic structure of AdS/CFT in the strong-coupling limit. We propose an expression for the classical r-matrix with (deformed) $${\mathfrak{u}(2|2)}$$ symmetry,…
First fundamental theorems of invariant theory for quantum supergroups
- MathematicsEuropean Journal of Mathematics
- 2019
Let $$\mathrm{U}_q({{\mathfrak {g}}})$$ U q ( g ) be the quantum supergroup of $${\mathfrak {gl}}_{m|n}$$ gl m | n or the modified quantum supergroup of $${\mathfrak {osp}}_{m|2n}$$ osp m | 2 n over…
The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup
- Mathematics
- 2016
We give an elementary and explicit proof of the first fundamental theorem of invariant theory for the orthosymplectic supergroup by generalising the geometric method of Atiyah, Bott and Patodi to the…
References
SHOWING 1-10 OF 13 REFERENCES
Universal R-matrix of the quantum superalgebra osp(2 | 1)
- Mathematics, Physics
- 1989
A quantum analogue of the simplest superalgebra osp(2 | 1) and its finite-dimensional, irreducible representations are found. The corresponding constant solution to the Yang-Baxter equation is…
The two-parameter deformation ofGL(2), its differential calculus, and Lie algebra
- Mathematics
- 1991
The Yang-Baxter equation is solved in two dimensions giving rise to a two-parameter deformation ofGL(2). The transformation properties of quantum planes are briefly discussed. Non-central determinant…
Consistent multiparameter quantisation of GL(n)
- Mathematics
- 1990
The author describes a manifold of quantum group structures on the vector space of the universal enveloping algebra of gl(n) and on its dual, the space of polynomials in n2 variables. The dimension…
Aq-difference analogue of U(g) and the Yang-Baxter equation
- Mathematics
- 1985
Aq-difference analogue of the universal enveloping algebra U(g) of a simple Lie algebra g is introduced. Its structure and representations are studied in the simplest case g=sl(2). It is then applied…
The multiparametric deformation ofGL(n) and the covariant differential calculus on the quantum vector space
- Mathematics, Physics
- 1991
AbstractAn(n−1)/2+1 parameter, solution of the Yang Baxter equation is presented giving rise to the quantum Group
$$GL_{X;q_{ij} } (n)$$
. Determinant and inverse are constructed. The group acts…
Multiparameter associative generalizations of canonical commutation relations and quantized planes
- Mathematics, Physics
- 1991
Multiparametric quantum deformation of the general linear supergroup
- Mathematics
- 1989
In the work L. D. Faddeev and his collaborators, and subsequently V. G. Drinfeld, M. Jimbo, S. L. Woronowicz, a new class of Hopf algebras was constructed. They can be considered as one-parametric…
The Pokrovski-Talapov Phase Transitions and Quantum Groups
- Mathematics, Physics
- 1992
We show that the XY quantum chain in a magnetic field is invariant under a two parameter deformation of the SU(1/1) superalgebra. One is led to an extension of the braid group and the Hecke algebras…