# A trilinear approach to square function and local smoothing estimates for the wave operator

@article{Lee2016ATA, title={A trilinear approach to square function and local smoothing estimates for the wave operator}, author={Jungjin Lee}, journal={arXiv: Classical Analysis and ODEs}, year={2016} }

The purpose of this paper is to improve Mockenhaupt's square function estimate and Sogge's local smoothing estimate in $\mathbb R^3$. For this we use the trilinear approach of S. Lee and A. Vargas for the cone multiplier and some trilinear estimates obtained from the $l^2$-decoupling theorem and multilinear restriction theorem.

#### Figures from this paper

#### 9 Citations

Square function estimates and Local smoothing for Fourier Integral Operators

- Mathematics
- 2020

We prove a variable coefficient version of the square function estimate of Guth--Wang--Zhang. By a classical argument of Mockenhaupt--Seeger--Sogge, it implies the full range of sharp local smoothing… Expand

Improved local smoothing estimate for the wave equation in higher dimensions

- Mathematics
- 2020

In this paper, we consider the local smoothing estimate associated with half-wave operator $e^{it\sqrt{-\Delta}}$ and the related fractional Schrodinger operator $e^{it(-\Delta)^{\alpha/2}}$ with… Expand

Variable coefficient Wolff-type inequalities and sharp local smoothing estimates for wave equations on manifolds

- Mathematics
- 2018

The sharp Wolff-type decoupling estimates of Bourgain--Demeter are extended to the variable coefficient setting. These results are applied to obtain new sharp local smoothing estimates for wave… Expand

Improved variable coefficient square functions and local smoothing of Fourier integral operators.

- Mathematics
- 2019

We establish certain square function estimates for a class of oscillatory integral operators with homogeneous phase functions. These results are employed to deduce a refinement of a previous result… Expand

Square function inequality for oscillatory integral operators satisfying homogeneous Carleson-Sj\"olin type conditions.

- Mathematics
- 2019

In this paper, we establish an improved variable coefficient version of square function inequality, by which the local smoothing estimate $L^p_\alpha\rightarrow L^p$ for the Fourier integral… Expand

Square function inequality for a class of Fourier integral operators satisfying cinematic curvature conditions

- Mathematics
- 2020

Abstract In this paper, we establish an improved variable coefficient version of the square function inequality, by which the local smoothing estimate Lαp→Lp{L^{p}_{\alpha}\to L^{p}} for the Fourier… Expand

Sharp local smoothing estimates for Fourier integral operators

- Mathematics
- 2018

The theory of Fourier integral operators is surveyed, with an emphasis on local smoothing estimates and their applications. After reviewing the classical background, we describe some recent work of… Expand

EFFECTIVE
l
2
DECOUPLING FOR THE PARABOLA

- Mathematics
- 2017

We make effective $l^2 L^p$ decoupling for the parabola in the range $4 < p < 6$. In an appendix joint with Jean Bourgain, we apply the main theorem to prove the conjectural bound for the sixth-order… Expand

A sharp square function estimate for the cone in
ℝ3

- Mathematics
- 2019

We prove a sharp square function estimate for the cone in $\mathbb{R}^3$ and consequently the local smoothing conjecture for the wave equation in $2+1$ dimensions.

#### References

SHOWING 1-10 OF 25 REFERENCES

A bilinear approach to cone multipliers II. Applications

- Mathematics
- 2000

Abstract. This paper is a continuation of [TV], in which new bilinear estimates for surfaces in
$ {\bold R}^3 $ were proven. We give a concrete improvement to the square function estimate of… Expand

Wave front sets, local smoothing and Bourgain's circular maximal theorem

- Mathematics
- 1992

The purpose of this paper is to improve certain known regularity results for the wave equation and to give a simple proof of Bourgain's circular maximal theorem [1]. We use easy wave front analysis… Expand

A local smoothing estimate in higher dimensions

- Mathematics
- 2002

We prove the higher-dimensional analogue of Wolff's local smoothing estimate (Geom. Funct. Anal. 2001) for large p. As in the 2+1-dimensional case, the estimate is sharp for any given value of p, but… Expand

IMPROVEMENTS IN WOLFF’S INEQUALITY FOR DECOMPOSITIONS OF CONE MULTIPLIERS

- 2010

We obtain mixed norm versions l(L) of an inequality introduced by Wolff in the context of local smoothing for the wave equation. We show that suitable modifications of the original arguments of Laba… Expand

Bounds on Oscillatory Integral Operators Based on Multilinear Estimates

- Mathematics
- 2010

We apply the Bennett–Carbery–Tao multilinear restriction estimate in order to bound restriction operators and more general oscillatory integral operators. We get improved Lp estimates in the Stein… Expand

L p regularity of averages over curves and bounds for associated maximal operators

- Mathematics
- 2005

We prove that for a finite type curve in â3 the maximal operator generated by dilations is bounded on Lp for sufficiently large p. We also show the endpoint Lp â Lp1/p regularity result for the… Expand

On the cone multiplier in R3

- Mathematics
- 2012

Abstract We prove the sharp L 3 bounds for the cone multiplier in R 3 and the associated square function, which is known as Mockenhauptʼs square function.

A note on the cone multiplier

- Mathematics
- 1993

In this paper we study the convolution operator given on the Fourier transform side by multiplication by ma(x,z) = <t>(z)(l-\x\/z)l, (;t,z)€R2xR, a>0, where <j> e Co°(l, 2). We will prove that ma… Expand

A mixed norm variant of Wolff’s inequality for paraboloids

- 2008

We adapt the proof for �(L) Wolff inequalities in the case of plate decompositions of paraboloids, to obtain stronger �2(Lp) versions. These are motivated by the study of Bergman projections for tube… Expand

On the multilinear restriction and Kakeya conjectures

- Mathematics
- 2005

We prove d-linear analogues of the classical restriction and Kakeya conjectures in Rd. Our approach involves obtaining monotonicity formulae pertaining to a certain evolution of families of… Expand