A topics course in mathematics

@article{Shenitzer1987ATC,
  title={A topics course in mathematics},
  author={A. Shenitzer},
  journal={The Mathematical Intelligencer},
  year={1987},
  volume={9},
  pages={44-52}
}
  • A. Shenitzer
  • Published 1987
  • Mathematics
  • The Mathematical Intelligencer
An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals
A construction of the real number system based on almost homomorphisms of the integers Z was proposed by Schanuel, Arthan, and others. We combine such a construction with the ultrapower or limitExpand
Teoría euclidiana de la proporción en la construcción de los números reales: ¿un asunto útil para un profesor?
Desde la epoca dorada griega, la teoria euclidiana de la proporcion, expresada en el Libro V de Elementos, se constituyo en esquema para la formulacion de relaciones entre magnitudes, sin interesarExpand
¿QUÉ TIPO DE HISTORIA DE LAS MATEMÁTICAS DEBE SER APROPIADA POR UN PROFESOR? ¿WHAT KIND OF HISTORY OF MATHEMATICS SHOULD BE APPROPIATE FOR A TEACER?
To ask about the role of the History of Mathematics in the construction of mathematics teachers’ knowledge immediately gives rise to the question entitling this conference, among other questions. InExpand
SOME NOT SO RANDOM THOUGHTS ABOUT THE HISTORY OF MATHEMATICS — ITS TEACHING, LEARNING, AND TEXTBOOKS
ABSTRACT The history of mathematics is attracting more attention in undergraduate classrooms. What should its learning objectives be? How can they best be realized? What is the place of a textbook inExpand

References

SHOWING 1-5 OF 5 REFERENCES
Geometric Transformations I
x = Y, y = X − Y 2 so that α′(x, y) = y, β′(x, y) = x− y 2 In the discrete case, if the forward transformation is applied to the picture p in order to get P , some pixels in P may not have a sourceExpand
History of Mathematics
A History of Mathematics.
Origins. Egypt. Mesopotamia. Ionia and the Pythagoreans. The Heroic Age. The Age of Plato and Aristotle. Euclid of Alexandria. Archimedes of Syracuse. Apollonius of Perga. Greek Trigonometry andExpand
A course of geometry