A theorem on amenable semigroups

@inproceedings{Granirer1964ATO,
  title={A theorem on amenable semigroups},
  author={Edmond E. Granirer},
  year={1964}
}
where (lj)(g) =f(ag) and (raf)(g) =f(ga). An invariant mean is a right and left invariant mean. Ml(G), \Mr(G)~\ c m(G)* will denote the set of left [right] invariant means and dim MIG = n will mean that the linear manifold spanned by Ml(G) cz m(G)* is n-dimensional (see [5, §2]). Q: ly(G) -* m(G)* will denote the natural mapping of the semigroup algebra ly(G) into m(G)*. The following is a result of I. S. Luthar (see [9]): A commutative semigroup G has a unique invariant mean (i.e., dim Ml(G… CONTINUE READING

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
SHOWING 1-4 OF 4 CITATIONS

References

Publications referenced by this paper.
SHOWING 1-9 OF 9 REFERENCES

On amenable semigroups with a finite dimensional set of invariant means

  • E. Granirer
  • I, Illinois J. Math
  • 1963
Highly Influential
7 Excerpts

Topologische Lineare Räume

  • G. Köthe
  • 1960

Luthar, Uniqueness of the invariant mean on an abelian semigroup

  • I S.
  • Illinois J. Math
  • 1959
1 Excerpt

Linear operators

  • N. Dunford, J. Schwartz
  • I, Interscience, New York,
  • 1958

Amenable semigroups, Illinois

  • M. M. Day
  • J. Math
  • 1957

General topology, Van Nostrand, Princeton, N

  • T. Kelley
  • J.,
  • 1955

Séminaire Chatelet-Dubreil, Demi-groupes 1953/54

  • R. Thibault
  • Inst. Henri Poincaré, Dissertations
  • 1953
1 Excerpt

Semigroups containing minimal left ideals, Amer

  • A. Clifford
  • J. Math
  • 1948

Similar Papers

Loading similar papers…