A technique for combined dynamic compression-shear test.


It is critically important to study the dynamic response of materials under a combined compression-shear loading for developing constitutive laws more accurately and fully. We present a novel technique to achieve the combined compression and shear loadings at high strain rates. The main apparatus consists of a strike bar, an incident bar, and two transmission bars. The close-to-specimen end of the incident bar is wedge-shaped with 90°. In each experiment, there are two identical specimens, respectively, agglutinated between one side of the wedge and one of transmission bars. When a loading impulse travels to specimens along the incident bar, because of the special geometrical shape, the specimen-incident bar interface gets an axial and a transverse velocity. Specimens endure a combined compression-shear loading at high strain rates. The compression stress and strain of the specimens are deduced from signals recorded by strain gages mounted on the bars. The shear stress is measured by two piezoelectric transducers of quartz (Y-cut with rotation angle 17.7°) embedded at the close-to-specimen end of transmission bars; the shear strain is measured with a novel optical technique, which is based on the luminous flux method. An analytic model was proposed and validated by the numerical simulations. The simulation results yield good agreement with the analytic results. The proposed technique was then validated through experiments carried out on lead specimens, by comparing experimental results with that of the split Hopkinson pressure bar experiments.

DOI: 10.1063/1.3557826

Cite this paper

@article{Zhao2011ATF, title={A technique for combined dynamic compression-shear test.}, author={Peter DeYong Zhao and Fuyun Lu and R B Chen and Y L Lin and J Li and L Lu and Guo L. Sun}, journal={The Review of scientific instruments}, year={2011}, volume={82 3}, pages={035110} }