A supervised approach to movie emotion tracking

Abstract

In this paper, we present experiments on continuous time, continuous scale affective movie content recognition (emotion tracking). A major obstacle for emotion research has been the lack of appropriately annotated databases, limiting the potential for supervised algorithms. To that end we develop and present a database of movie affect, annotated in continuous time, on a continuous valence-arousal scale. Supervised learning methods are proposed to model the continuous affective response using hidden Markov Models (independent) in each dimension. These models classify each video frame into one of seven discrete categories (in each dimension); the discrete-valued curves are then converted to continuous values via spline interpolation. A variety of audio-visual features are investigated and an optimal feature set is selected. The potential of the method is experimentally verified on twelve 30-minute movie clips with good precision at a macroscopic level.

DOI: 10.1109/ICASSP.2011.5946961

Extracted Key Phrases

7 Figures and Tables

010202011201220132014201520162017
Citations per Year

59 Citations

Semantic Scholar estimates that this publication has 59 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Malandrakis2011ASA, title={A supervised approach to movie emotion tracking}, author={Nikos Malandrakis and Alexandros Potamianos and Georgios Evangelopoulos and Athanasia Zlatintsi}, journal={2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, year={2011}, pages={2376-2379} }